Основы электротехники для начинающих. Школа для электрика: все об электротехнике и электронике

Введение

Поиск новой энергии для замены чадящих, дорогих, с низким КПД видов топлива привело к открытию свойств различных материалов накапливать, хранить, оперативно передавать и преобразовывать электричество. Два века назад были обнаружены, исследованы и описаны способы применения электроэнергии в быту и промышленности. С тех пор наука об электричестве выделилась в отдельную отрасль. Сейчас трудно представить нашу жизнь без электроприборов. Многие из нас без опаски берутся ремонтировать бытовую технику и успешно с этим справляются. Многие же боятся починить даже розетку. Вооружившись некоторыми знаниями, мы перестанем бояться электричества. Процессы, протекающие в сети, следует понимать и использовать в своих целях.
Предлагаемый курс рассчитан для начального ознакомления читателя (учащегося) с азами электротехники.

Основные электрические величины и понятия

Суть электричества состоит в том, что поток электронов движется по проводнику в замкнутой цепи от источника тока к потребителю и обратно. Перемещаясь, эти электроны выполняют определённую работу. Это явление называется – ЭЛЕКТРИЧЕСКИЙ ТОК, а единица измерения носит имя ученого, который первым исследовал свойства тока. Фамилия ученого - Ампер.
Необходимо знать, что ток при работе нагревает, изгибает и, старается поломать провода и все по чему он протекает. Это свойство следует учитывать при расчетах цепей, т.е., чем больше ток, тем толще провода и конструкции.
Если мы разомкнем цепь, ток прекратится, но на зажимах источника тока все-таки будет какой то потенциал, всегда готовый к работе. Разность потенциалов на двух концах проводника называется НАПРЯЖЕНИЕМ (U ).
U=f1-f2.
В свое время ученый по фамилии Вольт скрупулезно изучил электрическое напряжение и дал ему подробное объяснение. В последствии единице измерения присвоили его имя.
В отличие от тока, напряжение не ломает, а прожигает. Электрики говорят - пробивает. Поэтому все провода и электрические агрегаты защищены изоляцией, и чем больше напряжение, тем толще изоляция.
Немного позже еще один знаменитый физик - Ом, тщательно экспериментируя, выявил зависимость между этими электрическими величинами и описал ее. Сейчас каждый школьник знает закон Ома I=U/R . Его можно использовать для расчета простых цепей. Накрыв пальцем величину, которую ищем – увидим как ее вычислить.
Не стоит бояться формул. Для использования электроэнергии необходимы не столько они (формулы), сколько понимание того, что происходит в электроцепи.
А происходит следующее. Произвольный сточник тока, (назовем его пока – ГЕНЕРАТОР) вырабатывает электроэнергию и по проводам передает ее потребителю (назовём его, пока словом – НАГРУЗКА). Таким образом, у нас получилась замкнутая электрическая цепь ""ГЕНЕРАТОР – НАГРУЗКА"".
Пока генератор вырабатывает энергию, нагрузка ее потребляет и работает (т.е., преобразует электрическую энергию в механическую, световую или любую другую). Поставив обычный рубильник в разрыв провода, мы можем включать и выключать нагрузку, когда нам надо. Таким образом, получаем неисчерпаемые возможности регулирования работы. Интересно то, что при выключенной нагрузке нет необходимости отключать генератор (по аналогии с другими видами энергии - тушить костер под паровым котлом, перекрывать воду на мельнице и т.п.)
Важно при этом соблюдать пропорции ГЕНЕРАТОР-НАГРУЗКА. Мощность генератора не должна быть меньше мощности нагрузки. Нельзя к слабому генератору подключать мощную нагрузку. Это все равно, что старую клячу запрячь в тяжеленную телегу. Мощность всегда можно узнать из документации на электроприбор или его маркировки на табличке, прикрепляемой к боковой или задней стенке электроприбора. Понятие МОЩНОСТЬ ввели в обиход более века назад, когда электричество вышло за пороги лабораторий и, стало применяться в быту и промышленности.
Мощность - произведение напряжения и тока. За единицу принят Ватт. Эта величина показывает, какой ток потребляет нагрузка при таком напряжении. Р=U х

Электрические материалы. Сопротивление, проводимость.

Мы уже упоминали величину под названием ОМ. Теперь остановимся на ней подробнее. Уже давно ученые обратили внимание на то, что разные материалы по-разному ведут себя с током. Одни беспрепятственно его пропускают, другие упорно ему сопротивляются, третьи пропускают его только в одну сторону, или же пропускают «на определенных условиях». После испытаний на проводимость всех возможных материалов стало понятным, что абсолютно все материалы , в той или иной степени, могут проводить ток. Для оценки «меры» проводимости вывели единицу электрического сопротивления, и назвали её ОМ, а материалы, в зависимости от их «способности» пропускать ток, разделили на группы.
Одна группа материалов это проводники . Проводники без особых потерь проводят ток. К проводникам относятся материалы, имеющие сопротивление от нуля до 100 Ом/м. Такими свойствами обладают, в основном, металлы.
Другая группа – диэлектрики . Диэлектрики тоже проводят ток, но с огромными потерями. Их сопротивление от 10000000 Ом и до бесконечности. К диэлектрикам, в своем большинстве, относятся неметаллы, жидкости и различные соединения газов.
Сопротивление 1 Ом означает, что в проводнике сечением 1 кв. мм и длиной 1 метр потеряется 1 Ампер тока..
Величина обратная сопротивлению – проводимость . Величину проводимости того или иного материала всегда можно найти в справочниках. Удельные сопротивления и проводимости некоторых материалов приведены в таблице № 1

ТАБЛИЦА № 1

МАТЕРИАЛ

Удельное сопротивление

Удельная проводимость

Алюминий

Вольфрам

Платиноиридиевый сплав

Константан

Хромоникель

Твердые изоляторы

От 10(в степени 6) и выше

10(в степени минус 6)

10(в степени 19)

10(в степени минус 19)

10(в степени 20)

10(в степени минус 20)

Жидкие изоляторы

От 10(в степени 10) и выше

10(в степени минус 10)

Газообразные

От 10(в степени 14) и выше

10(в степени минус 14)

Из таблицы можно видеть, что самыми проводящими материалами являются – серебро, золото, медь и алюминий. В силу высокой стоимости серебро и золото применяется только в высокотехнологичных схемах. А медь и алюминий получили широчайшее применение в качестве проводников.
Еще видно, что нет абсолютно проводящих материалов, поэтому при расчетах всегда надо учитывать, что в проводах теряется ток и падает напряжение.
Есть еще одна, довольно большая и "интересная" группа материалов – полупроводники . Проводимость этих материалов изменяется в зависимости от условий окружающей среды. Полупроводники начинают лучше или, наоборот, хуже проводить ток, если их подогреть/охладить, или осветить, или согнуть, или, например, ударить током.

Условные обозначения в электрических схемах.

Для полного понимания происходящих в цепи процессов необходимо уметь правильно читать электрические схемы. Для этого надо знать условные обозначения. С 1986 года вступил в силу стандарт, который во многом убрал разночтения в обозначениях, имеющиеся между европейскими и российскими ГОСТами. Теперь электрическую схему из Финляндии может прочитать электрик из Милана и Москвы, Барселоны и Владивостока.
В электрических схемах встречаются два вида обозначений: графические и буквенные.
Буквенные коды наиболее распространенных видов элементов представлены в таблице № 2:
ТАБЛИЦА № 2

Устройства

Усилители, приборы телеуправления, лазеры…

Преобразователи неэлектрических величин в электрические и наоборот (кроме источников питания), датчики

Громкоговорители, микрофоны, чувствительные термоэлектрические элементы, детекторы ионизирующих излучений, сельсины.

Конденсаторы.

Интегральные микросхемы, микросборки.

Устройства памяти, логические элементы.

Разные элементы.

Осветительные устройства, нагревательные элементы.

Разрядники, предохранители, защитные устройства.

Элементы защиты по току и напряжению, плавкие предохранители.

Генераторы, источники питания.

Батареи, аккумуляторы, электрохимические и электротермические источники.

Индикационные и сигнальные устройства.

Приборы звуковой и световой сигнализации, индикаторы.

Реле контакторы, пускатели.

Реле токовые и напряжения, тепловые, времени, магнитные пускатели.

Катушки индуктивности, дроссели.

Дроссели люминесцентного освещения.

Двигатели.

Двигатели постоянного и переменного тока.

Приборы, измерительное оборудование.

Показывающие и регистрирующие и измерительные приборы, счетчики, часы.

Выключатели и разъединители в силовых схемах.

Разъединители, короткозамыкатли, автоматические выключатели (силовые)

Резисторы.

Переменные резисторы, потенциометры, варисторы, терморезисторы.

Коммутационные устройства в цепях управления, сигнализации и измерительных.

Выключатели, переключатели, выключатели, срабатывающие от различных воздействий.

Трансформаторы, автотрансформаторы.

Трансформаторы тока и напряжения, стабилизаторы.

Преобразователи электрических величин.

Модуляторы, демодуляторы, выпрямители, инверторы, преобразователи частоты.

Электровакуумные, полупроводниковые приборы.

Электронные лампы, диоды, транзисторы, диоды, тиристоры, стабилитроны.

Линии и элементы сверхвысокой частоты, антенны.

Волноводы, диполи, антенны.

Контактные соединения.

Штыри, гнезда, разборные соединения, токосъемники.

Механические устройства.

Электромагнитные муфты, тормоза, патроны.

Оконечные устройства, фильтры, ограничители.

Линии моделирования, кварцевые фильтры.

Условные графические обозначения представлены в таблицах № 3 - № 6. Провода на схемах обозначаются прямыми линиями.
Одним из основных требований при составлении схем является простота их восприятия. Электрик, при взгляде на схему должен понять, как устроена цепь и как действует тот или иной элемент этой цепи.
ТАБЛИЦА № 3 . Условные обозначения контактных соединений

Разъемные-

неразъемные, разборные

неразъемные, неразборные

Место контакта или присоединения может располагаться на любом участке провода от одного разрыва до другого.

ТАБЛИЦА №4 . Условные обозначения включателей, выключателей, разъединителей.

замыкающий

размыкающий

Однополюсный выключатель

Однополюсный разъединитель

Трехполюсный выключатель

Трехполюсный разъединитель

Трехполюсный разъединитель с автоматическим возвратом (сленговое название - «АВТОМАТ»)

Однополюсный разъединитель с автоматическим возвратом

Нажимной выключатель (т.н. - «КНОПКА»)

Вытяжной выключатель

Выключатель с возвратом при повторном нажатии кнопки (можно встретить в настольных или настенных светильниках)

Путевой однополюсный выключатель (также известен под именем «концевой» или «конечник»)

Вертикальные линии, пересекающие подвижные контакты, говорят, что все три контакта замыкаются (или размыкаются) одновременно от одного воздействия.
При рассмотрении схемы необходимо учитывать то, что некоторые элементы цепи чертятся одинаково, но их буквенное обозначение будет отличаться (например, контакт реле и выключатель).

ТАБЛИЦА № 5. Обозначение контактов реле контакторов

замыкающие

размыкающие

с замедлением при срабатывании

с замедлением при возврате

с замедлением при срабатывании и при возврате

ТАБЛИЦА № 6. Полупроводниковые приборы

Стабилитрон

Тиристор

Фотодиод

Светодиод

Фоторезистор

Солнечный фотоэлемент

Транзистор

Конденсатор

Дроссель

Сопротивление

Электрические машины постоянного тока –

Асинхронные трехфазные электрические машины переменного тока –

В зависимости от буквенного обозначения эти машины будут, либо генератором, либо двигателем.
При маркировке электрических цепей соблюдают следующие требования:

  1. Участки цепи, разделенные контактами аппаратов, обмотками реле, приборов, машин и другими элементами, маркируют по-разному.
  2. Участки цепи, проходящие через разъемные, разборные или неразборные контактные соединения, маркируют одинаково.
  3. В трехфазных цепях переменного тока фазы маркируют: «А», «В», «С», в двухфазных – «А», «В»; «В», «С»; «С», «А», а в однофазных – «А»; «В»; «С». Ноль обозначают буквой – «О».
  4. Участки цепей положительной полярности маркируют нечетными числами, а отрицательной полярности – четными.
  5. Рядом с условным обозначением силового оборудования на чертежах планов дробью указывают номер оборудования по плану (в числителе) и его мощность (в знаменателе), а у светильников – мощность (в числителе) и высоту установки в метрах (в знаменателе).

Необходимо понимать, что все электрические схемы показывают состояние элементов в исходном состоянии, т.е. в тот момент, когда в цепи отсутствует ток.

Электрическая цепь. Параллельное и последовательное включение.

Как уже говорилось выше, мы можем отключать нагрузку от генератора, мы можем подключать к генератору другую нагрузку, а можно подключить несколько потребителей одновременно. В зависимости от стоящих задач мы можем включить несколько нагрузок параллельно или последовательно. При этом меняется не только схема, но и характеристики цепи.

При параллельном подключении напряжение на каждой нагрузке будет одинаковой, и работа одной нагрузки не будет влиять на работу других нагрузок.

При этом, ток в каждой цепи будет разный и будет суммироваться в местах соединений.
Iобщ = I1+I2+I3+…+In
Подобным образом подключается вся нагрузка в квартире, например лампы в люстре, конфорки в электрической кухонной плите и т.п.

При последовательном включении, напряжение равными долями распределится между потребителями

В этом случае по всем включенным в цепь нагрузкам будет проходить суммарный ток и в случае выхода из строя одного из потребителей вся схема перестанет работать. Такие схемы используются в новогодних гирляндах. Кроме того, при использовании элементов разной мощности в последовательной цепи, слабые приемники просто перегорают.
Uобщ = U1 + U2 + U3 + … + Un
Мощность, при любом способе подключения, суммируется:
Робщ = Р1 + Р2 + Р3 + … + Рn.

Расчет сечения проводов.

Ток, проходя по проводам, нагревает их. Чем тоньше проводник, и чем больше проходящий через него ток, тем сильнее нагрев. При нагреве плавится изоляция провода, что может привести к короткому замыканию и пожару. Расчет тока в сети не сложен. Для этого надо мощность прибора в ваттах разделить на напряжение: I = P / U.
Все материалы имеют допустимую проводимость. Это значит, что такой ток они могут пропустить через каждый квадратный миллиметр (т.е. сечение) без особых потерь и нагрева (см. таблицу №7).

ТАБЛИЦА № 7

Сечение S (кв.мм.)

Допустимый ток I

алюминий

Теперь, зная ток, мы без труда выбираем из таблицы нужное сечение провода и, если надо, рассчитываем диаметр провода, пользуясь простой формулой: D=V S/п х 2
Можно идти в магазин за проводом.

В качестве примера рассчитаем толщину проводов для подключения бытовой кухонной плиты: Из паспорта или по табличке на оборотной стороне агрегата узнаем мощность плиты. Допустим, мощность (P ) равна 11 кВт (11 000 Ватт). Разделив мощность на напряжение сети (в большинстве регионов России это 220 Вольт) получим ток, который будет потреблять плита: I = P / U =11000/220=50А. Если использовать медные провода, то сечение провода S должно быть не менее 10 кв. мм. (см. таблицу).
Надеюсь, читатель не обидится на меня за то, что я напомню ему о том, что сечение проводника и его диаметр, это не одно и тоже. Сечение провода равно п (Пи) умноженное на r в квадрате (п X r X r). Диаметр провода можно рассчитать, вычислив квадратный корень из сечения провода, деленного на п и умножив полученное значение на два. Понимая, что многие из нас уже подзабыли школьные постоянные, напомню, что Пи равно 3,14 , а диаметр - это два радиуса. Т.е. толщина нужного нам провода будет D = 2 X V 10 / 3,14 = 2,01 мм.

Магнитные свойства электрического тока.

Давно замечено, что при прохождении тока по проводникам возникает магнитное поле способное воздействовать на магнитные материалы. Из школьного курса физики мы, возможно, помним, что разноимённые полюса магнитов притягиваются, а одноименные отталкиваются. Это обстоятельство следует учитывать при прокладке проводок. Два провода, по которым ток течет в одну сторону, будут притягиваться друг к другу, и наоборот.
Если провод скрутить в катушку, то, при пропускании через него электрического тока, магнитные свойства проводника проявятся еще сильнее. А если в катушку вставить еще и сердечник, тогда получим мощный магнит.
В конце позапрошлого века американец Морзе изобрел устройство, которое позволяло передавать информацию на большие расстояния без помощи гонцов. Аппарат этот основан, на способности тока возбуждать магнитное поле вокруг катушки. Подавая на катушку питание от источника тока, в ней возникает магнитное поле, притягивающее подвижный контакт, который замыкает цепь другой такой же катушки, и т.д. Таким образом, находясь на значительном расстоянии от абонента можно без особых проблем передавать закодированные сигналы. Это изобретение получило широкое применение, как в связи, так в быту и промышленности.
Описанное устройство уже давно устарело и почти не используется на практике. На смену ему пришли мощные информационные системы, но в основе своей все они продолжают работать по тому же принципу.

Мощность любого двигателя несоизмеримо выше мощности катушки реле. Поэтому провода к основной нагрузке толще, чем к управляющим аппаратам.
Введём понятие силовых цепей и цепей управления. К силовым цепям относятся все ведущие к нагрузке ток части цепи (провода, контакты, измерительные и контролирующие приборы). На схеме они выделены цветом.

Все провода и аппаратура управления, контроля и сигнализации относятся к цепям управления. На схеме они выделены отдельно. Бывает что нагрузка не очень велика или особо не выражена. В таких случаях цепи условно делят по силе тока в них. Если ток превышает 5 Ампер – цепь силовая.

Реле. Контакторы.

Важнейшим элементом, упоминавшегося уже аппарата Морзе является РЕЛЕ .
Это устройство интересно тем, что на катушку можно подать относительно слабый сигнал, который преобразуется в магнитное поле и замыкает другой, более мощный, контакт, или группу контактов. Некоторые из них могут не замыкаться, а, наоборот, размыкаться. Это тоже нужно для разных целей. На чертежах и схемах это изображается так:

А читается следующим образом: при подаче питания на катушку реле - К контакты: К1, К2, К3, и К4 замыкаются, а контакты: К5,К6,К7 и К8 – размыкаются. Важно помнить, что на схемах показываются только те контакты, которые будут задействованы, не смотря на то, что реле может иметь большее количество контактов.
На принципиальных схемах показывается именно принцип построения сети и её работы, поэтому контакты и катушка реле не рисуются вместе. В системах, где много функциональных устройств, основную трудность представляет то, как правильно найти соответствующие катушкам контакты. Но с приобретением опыта эта проблема решается проще.
Как мы уже говорили ток и напряжение, разные материи. Ток, сам по себе, очень силен и, надо приложить немалые усилия, что бы его отключить. При отключении цепи (электрики говорят – коммутации ) возникает большая дуга, которая может зажечь материал.
При силе тока I=5А, возникает дуга длинной 2 см. При больших токах размеры дуги достигают чудовищных размеров. Приходится применять специальные меры, чтобы не расплавить материал контактов. Одна из таких мер - ""дугогасительные камеры" ".
Эти устройства ставят у контактов на силовых реле. Кроме того, контакты имеют другую, отличную от реле форму, это позволяет еще до возникновения дуги разделить ее пополам. Такое реле называется контактором . Некоторые электрики окрестили их пускателями. Это неправильно, но в точности передает суть работы контакторов.
Все электроприборы производятся различных типоразмеров. Каждый размер говорит о способности выдержать токи определенной силы, поэтому, устанавливая аппаратуру необходимо следить за тем, чтобы типоразмер коммутирующего прибора соответствовал току нагрузки (таблица № 8) .

ТАБЛИЦА № 8

Величина, (условный номер типоразмера)

Номинальный ток

Номинальная мощность

Генератор. Двигатель.

Магнитные свойства тока интересны еще и тем, что они обратимы. Если с помощью электричества можно получить магнитное поле, то можно и наоборот. После не очень продолжительных исследований (всего то около 50 лет) было выяснено, что если проводник перемещать в магнитном поле, то по проводнику начинает течь электрический ток . Это открытие помогло человечеству преодолеть проблему запасания и хранения энергии. Теперь у нас на вооружении есть электрический генератор. Простейший генератор устроен не сложно. Виток провода вращается в поле магнита (или наоборот) и по нему течет ток. Остаётся только замкнуть цепь на нагрузку.
Конечно же, предложенная модель сильно упрощенна, но в принципе генератор отличается от этой модели не так уж и сильно. Вместо одного витка берутся километры проволоки, (это называется обмоткой ). Вместо постоянных магнитов используются электромагниты, (это называется возбуждением ). Наибольшую проблему в генераторах представляют способы отбора тока. Устройством для отбора вырабатываемой энергии является коллектор .
При монтаже электрических машин необходимо следить за целостностью щеточных контактов и плотностью прилегания их к коллекторным пластинам. При замене щеток, их придется притирать.
Имеется еще одна интересная особенность. Если у генератора не забирать ток, а, наоборот, подавать на его обмотки, то генератор превратится в двигатель. Это означает, что электрические машины полностью обратимы. То есть, не изменяя конструкцию и схему, мы можем использовать электрические машины, как в качестве генератора, так и в качестве источника механической энергии. Например, электропоезд при движении в горку потребляет электроэнергию, а под горку – выдает её в сеть. Таких примеров можно привести много.

Измерительные приборы.

Одним из самых опасных факторов, связанных с эксплуатацией электричества является то, что наличие тока в цепи можно определить, только очутившись под его воздействием, т.е. соприкоснувшись с ним. До этого момента электрический ток ничем не выдает своего присутствия. В связи с таким поведением возникает острая необходимость его обнаружения и измерения. Зная магнитную природу электричества, мы можем не только определить наличие/отсутствие тока, но и измерить его.
Существует много приборов для измерения электрических величин. Многие из них имеют обмотку магнита. Ток, протекая по обмотке, возбуждает магнитное поле и отклоняет стрелку прибора. Чем сильнее ток, тем больше отклоняется стрелка. Для большей точности измерений применяется зеркальная шкала, чтобы взгляд на стрелку был перпендикулярен измерительной панели.
Для измерения тока используется амперметр . Он включается в цепь последовательно. Чтобы измерить ток, величина которого больше номинального, чувствительность прибора уменьшают шунтом (мощным сопротивлением).

Напряжение измеряют вольтметром , к цепи он подключается параллельно.
Комбинированный прибор для измерения и тока и напряжения называют авометром .
Для замеров сопротивления используют омметр или мегомметр . Этими приборами часто прозванивают цепь, что бы найти обрыв или удостовериться в ее целостности.
Измерительные приборы должны проходить периодическое тестирование. На крупных предприятиях специально для этих целей создаются измерительные лаборатории. После тестирования прибора лаборатория ставит на его лицевую сторону свое клеймо. Наличие клейма говорит о том, что прибор работоспособен, имеет допустимую точность (погрешность) измерения и, при условии правильной эксплуатации, до следующей поверки его показаниям можно верить.
Счетчик электроэнергии тоже является измерительным прибором, в который добавлена еще и функция учета используемой электроэнергии. Принцип действия счётчика предельно прост, как и его устройство. Он имеет обычный электродвигатель с редуктором, подключенным к колесикам с циферками. При увеличении силы тока в цепи двигатель крутится быстрей, быстрее перемещаются и сами цифры.
В быту мы пользуемся не профессиональной измерительной техникой, но в силу отсутствия необходимости очень точного измерения это не столь существенно.

Способы получения контактных соединений.

Казалось бы, что нет ничего проще, чем соединить два провода между собой – скрутил и все. Но, как подтверждает опыт, львиная доля потерь в цепи приходится именно на места соединений (контакты). Дело в том, что атмосферный воздух, содержит КИСЛОРОД, который является самым мощным окислителем, имеющимся в природе. Любое вещество, вступая с ним в контакт, подвергается окислению, покрываясь сначала тончайшей, а со временем всё более толстой пленкой окисла, имеющей очень высокое удельное сопротивление. Кроме того, возникают проблемы при соединении проводников, состоящих из разных материалов. Такие соединение, как известно, представляет собой либо гальваническую пару (которая окисляется еще быстрей) либо биметаллическую пару (которая при перепаде температуры изменяет свою конфигурацию). Разработано несколько способов надёжных соединений.
Сваркой соединяют железные провода при монтаже заземления и средств молнезащиты. Сварочные работы выполняются квалифицированным сварщиком, а электрики подготавливают провода.
Медные и алюминиевые проводники соединяют пайкой.
Перед пайкой с жил снимают изоляцию на длину до 35мм, зачищают до металлического блеска и обрабатывают флюсом в целях обезжиривания и для лучшего сцепления припоя. Составные части флюсов всегда можно найти в торговых точках и аптеках в нужных количествах. Наиболее распространённые флюсы приведены в таблице № 9.
ТАБЛИЦА № 9 Составы флюсов.

Марка флюса

Область применения

Химический состав %

Пайка токопроводящих частей из меди, латуни и бронзы.

Канифоль-30,
Спирт этиловый-70.

Пайка проводниковых изделий из меди и ее сплавов, алюминия, константана, манганина, серебра.

Вазелин-63,
Триэтаноломин-6,5,
Кислота салициловая-6,3,
Спирт этиловый-24,2.

Пайка изделий из алюминия и его сплавов цинковыми и алюминиевыми припоями.

Фтористый натрий-8,
Хлористый литий-36,
Хлористый цинк-16,
Хлористый калий-40.

Водный раствор хлористого цинка

Пайка изделий из стали, меди и ее сплавов.

Хлористый цинк-40,
Вода-60.

Спаивание алюминиевых проводов с медными.

Фтороборат кадмия-10,
Фтороборат аммония-8,
Триэтаноломин-82.

Для пайки алюминиевых однопроволочных жил 2,5-10кв.мм. используют паяльник. Скручивание жил выполняют двойной скруткой с желобком.


При пайке жилы нагревают до начала плавления припоя. Потирая желобок палочкой припоя, лудят жилы и заполняют желобок припоем, сначала с одной, а затем с другой стороны. Для пайки алюминиевых жил больших сечений используют газовую горелку.
Одно- и многопроволочные медные жилы спаивают луженой скруткой без желобка в ванночке с расплавленным припоем.
В таблице № 10 приведены температуры плавления и пайки некоторых типов припоев и область их применения.

ТАБЛИЦА № 10

Температура плавления

Температура пайки

Область применения

Лужение и пайка концов алюминиевых проводов.

Пайка соединений, сращивание алюминиевых проводов круглого и прямоугольного сечения при намотке трансформаторов.

Пайка заливкой алюминиевых проводов большого сечения.

Пайка изделий из алюминия и его сплавов.

Пайка и лужение токопроводящих частей из меди и ее сплавов.

Лужение, пайка меди и ее сплавов.

Пайка деталей из меди и ее сплавов.

Пайка полупроводниковых приборов.

Пайка плавких предохранителей.

ПОССу 40-05

Пайка коллекторов и секций электрических машин, приборов.

Соединение алюминиевых жил с медными выполняют так же, как соединение двух алюминиевых жил, при этом алюминиевую жилу сначала лудят припоем «А», а затем припоем ПОССу. После остывания место пайки изолируют.
Последнее время все чаще применяют соединительную арматуру, где провода соединяются болтами в специальных соединительных секциях.

Заземление .

От долгой работы материалы «устают» и изнашиваются. При недосмотре может случиться так, что какая-нибудь токопроводящая деталь отваливается и падает на корпус агрегата. Мы уже знаем, что напряжение в сети обусловлено разностью потенциалов. На земле, обычно, потенциал равен нулю, и если на корпус упал один из проводов, то напряжение между землей и корпусом будет равно напряжению сети. Касание корпуса агрегата, в этом случае, смертельно опасно.
Человек также является проводником и может через себя пропустить ток от корпуса на землю или в пол. В этом случае человек подключается к сети последовательно и, соответственно, весь ток нагрузки из сети пойдет по человеку. Даже если нагрузка в сети небольшая все равно это грозит существенными неприятностями. Сопротивление среднестатистического человека примерно равно 3 000 Ом. Произведенный по закону Ома расчет тока покажет, что по человеку потечет ток I = U/R = 220/3000 =0,07 А. Казалось бы, немного, но может и убить.
Во избежание этого, делают заземление . Т.е. намеренно соединяют корпуса электрических устройств с землей, что бы вызвать короткое замыкание, в случае пробоя на корпус. При этом срабатывает защита и отключает неисправный агрегат.
Заземлители заглубляют в грунт, сваркой присоединяют к ним заземляющие проводники, которые болтами прикручивают ко всем агрегатам, чьи корпуса могут оказаться под током.
Кроме того, в качестве меры защиты, применяют зануление . Т.е. с корпусом соединяют ноль. Принцип срабатывания защиты аналогичен заземлению. Разница лишь в том, что заземление зависит от характера почвы, ее влажности, глубины залегания заземлителей, состояния множества соединений и т.д. и т.п. А зануление напрямую соединяет корпус агрегата с источником тока.
Правила устройства электроустановок говорят, что при устройстве зануления, заземлять электроустановку необязательно.
Заземлитель представляет собой металлический проводник или группу проводников, находящихся в непосредственном соприкосновении с землей. Различают следующие виды заземлителей:

  1. Углубленные , выполненные из полосовой или круглой стали и, укладываемые горизонтально на дно котлованов зданий по периметру их фундаментов;
  2. Горизонтальные , выполненные из круглой или полосовой стали и уложенные в траншею;
  3. Вертикальные – из стальных, вертикально вдавленных в грунт стальных стержней.

Для заземлителей применяют круглую сталь диаметром 10 – 16 мм, полосовую сталь сечением 40х4 мм, отрезки угловой стали 50х50х5 мм.
Длина вертикальных ввинчиваемых и вдавливаемых заземлителей – 4,5 – 5 м; забиваемых – 2,5 – 3 м.
В производственных помещениях с электроустановками напряжением до 1 кВ применяют магистрали заземления сечением не менее 100 кв. мм, а напряжением выше 1 кВ – не менее 120 кв. мм
Наименьшие допустимые размеры стальных заземляющих проводников (в мм) показаны в таблице №11

ТАБЛИЦА № 11

Наименьшие допустимые размеры медных и алюминиевых заземляющих и нулевых проводников (в мм), приведены в таблице № 12

ТАБЛИЦА № 12

Над дном траншеи вертикальные заземлители должны выступать на 0,1 - 0,2 м для удобства приварки к ним соединительных горизонтальных стержней (сталь круглого сечения более устойчива против коррозии, чем полосовая). Горизонтальные заземлители укладывают в траншеи глубиной 0,6 – 0,7 м от уровня планировочной отметки земли.
У мест ввода проводников в здание устанавливают опознавательные знаки заземлителя. Расположенные в земле заземлители и заземляющие проводники не окрашивают. Если в грунте содержатся примеси, вызывающие повышенную коррозию, применяют заземлители увеличенного сечения, в частности, круглую сталь диаметром 16 мм, оцинкованные или омедненные заземлители, или осуществляют электрическую защиту заземлителей от коррозии.
Заземляющие проводники прокладывают горизонтально, вертикально или параллельно наклонным конструкциям зданий. В сухих помещениях заземляющие проводники укладывают непосредственно по бетонным и кирпичным основаниям с креплением полос дюбелями, а в сырых и особо сырых помещениях, а также в помещениях с агрессивной атмосферой – на подкладках или опорах (держателях) на расстоянии не менее 10 мм от основания.
Проводники крепят на расстояниях 600 – 1 000 мм на прямых участках, 100 мм на поворотах от вершин углов, 100 мм от мест ответвлений, 400 – 600 мм от уровня пола помещений и не менее 50 мм от нижней поверхности съемных перекрытий каналов.
Открыто проложенные заземляющие и нулевые защитные проводники имеют отличительную окраску – по зеленому фону прокрашивают желтую полосу вдоль проводника.
В обязанность электриков входит, периодически проверять состояние заземления. Для этого мегомметром замеряется сопротивление заземления. ПУЭ. Регламентируют следующие значения сопротивлений заземляющих устройств в электроустановках (Табл. №13).

ТАБЛИЦА № 13

Заземляющие устройства (заземление и зануление) на электроустановках выполняют во всех случаях если напряжение переменного тока равно или выше 380 В, а напряжение постоянного тока выше или равно 440 В;
При напряжении переменного тока от 42 В до 380 Вольт и от 110 В до 440 Вольт постоянного тока заземление выполняется в помещениях с повышенной опасностью, а также на особо опасных и наружных установках. Заземление и зануление во взрывоопасных установках выполняют при любых напряжениях.
Если характеристики заземления не соответствуют допустимым стандартам, проводятся работы по восстановлению заземления.

Шаговое напряжение.

В случае обрыва провода и попадания его на землю или корпус агрегата, напряжение равномерно «растекается» по поверхности. В точке касания провода земли, оно равно сетевому напряжению. Но чем дальше от центра касания, тем падение напряжения больше.
Тем не менее, при напряжении между потенциалами в тысячи, и десятки тысяч вольт, даже в нескольких метрах от точки касания провода земли, напряжение все-таки будет опасным для человека. При попадании человека в эту зону, по телу человека потечёт ток (по цепи: земля - ступня – колено – пах – другое колено – другая ступня - земля). Можно, с помощью закона Ома, быстро посчитать какой именно ток потечет, и представить последствия. Так как напряжение возникает, по сути, между ног человека, оно получило название – шаговое напряжение .
Не стоит испытывать судьбу, увидев свисающий со столба провод. Надо принять меры к безопасной эвакуации. А меры следующие:
Во-первых, не стоит двигаться широким шагом. Нужно шаркающими шажками, не отрывая ног от земли удалиться подальше от места касания.
Во-вторых, нельзя падать и ползти!
И, в-третьих, до прибытия аварийной бригады необходимо ограничить доступ людей в опасную зону.

Трехфазный ток.

Выше мы разобрались, как работает генератор и двигатель постоянного тока. Но эти двигатели имеют ряд недостатков, которые сдерживают их применение в промышленной электротехнике. Большее распространение получили машины переменного тока. Устройство снятия тока в них представляет собой кольца, которое проще в изготовлении и обслуживании. Переменный ток ничуть «не хуже» постоянного, а по некоторым показателям превосходит его. Постоянный ток всегда течет в одном направлении при постоянной величине. Переменный ток изменяет направление или величину. Основной его характеристикой является частота, измеряемая в Герцах . Частота показывает, сколько раз в секунду ток меняет направление или амплитуду. В европейском стандарте промышленная частота f=50 Герц, в стандарте США f=60 Герц.
Принцип работы двигателей и генераторов переменного тока, такой же, как и у машин постоянного тока.
У двигателей переменного тока имеется проблема ориентирования направления вращения. Приходится либо смещать направление тока дополнительными обмотками, либо применять специальные пусковые устройства. Использование трехфазного тока решило эту проблему. Суть его «устройства» в том, что три однофазных системы связали в одну - трехфазную. По трем проводам подаётся ток с небольшим запозданием друг от друга. Эти три провода всегда называют ""А"", ""В"" и ""С"". Ток течет следующим образом. По фазе «А» на нагрузку и от неё возвращается по фазе «В», из фазы «В» в фазу «С», а из фазы «С» в «А».
Существуют две системы трехфазного тока: трех проводная и четырех проводная. Первую мы уже описали. А во второй присутствует четвертый нулевой провод. В такой системе по фазам ток подается, а по нулю отводится. Данная система оказалась настолько удобной, что сейчас применяется повсеместно. Удобна она, в том числе и тем, что не надо что-то переделывать, если нужно включить в нагрузку только один или два провода. Просто подключаемся/отключаемся и все.
Напряжение между фазами называется линейным (Uл) и равно напряжению в линии. Напряжение между фазным (Uф) и нулевым проводом называется фазным и вычисляется по формуле: Uф=Uл/V3; Uф=Uл/1,73.
Каждый электрик давно эти расчеты произвел и наизусть знает стандартный ряд напряжений (таблица № 14).

ТАБЛИЦА № 14

При включении в трехфазную сеть однофазных нагрузок необходимо следить за равномерностью подключения. В противном случае выйдет, что один провод будет сильно перегружен, а два других при этом останутся без дела.
Все трехфазные электрические машины имеют по три пары полюсов и ориентируют направление вращения подключением фаз. При этом для изменения направления вращения (электрики говорят – РЕВЕРСа) достаточно поменять местами только две фазы, любые.
Аналогично и с генераторами.

Включение в «треугольник» и «звезду».

Имеются три схемы включения трехфазной нагрузки в сеть. В частности, на корпусах электродвигателей имеется контактная коробка с выводами обмоток. Маркировка в клеммных коробках электрических машин следующая:
начала обмоток С1, С2 и С3, концы, соответственно С4, С5 и С6 (крайний левый рисунок).

Подобную маркировку крепят и на трансформаторах.
Соединение""треугольником"" показано на среднем рисунке. При таком соединении весь ток из фазы к фазе проходит по одной обмотке нагрузки и, в этом случае, потребитель работает на полную мощность. На крайнем правом рисунке показаны соединения в клемной коробке.
Соединение""в звезду"" может «обходиться» без нуля. При таком подключении линейный ток, проходя через две обмотки, делится пополам и, соответственно, потребитель работает в половину силы.

При соединение""в звезду"" с нулевым проводом на каждую обмотку нагрузки поступает только фазное напряжение: Uф=Uл/V3. Мощность потребителя получается меньше на V3.


Электрические машины из ремонта.

Большую проблему представляют старые двигатели, вышедшие из ремонта. Такие машины, как правило, не имеют табличек и клеммных выходов. Провода торчат из корпусов, и похожи на лапшу из мясорубки. И если подключить их неправильно, то в лучшем случае, двигатель будет перегреваться, а в худшем - сгорит.
Происходит это, потому что одна из трех, неправильно подключённых обмоток, будет стараться провернуть ротор двигателя, в сторону, противоположную вращению, создаваемому двумя другими обмотками.
Чтобы подобного не случилось необходимо найти концы одноименных обмоток. Для этого с помощью тестера «прозванивают» все обмотки, одновременно проверяя и их целостность (отсутствие обрыва и пробоя на корпус). Найдя концы обмоток, их маркируют. Цепь собирается следующим образом. К предполагаемому окончанию первой обмотки присоединяем предполагаемое начало второй обмотки, конец второй соединяем с началом третьей, а с оставшихся концов снимаем показания омметра.
Заносим значение сопротивления в таблицу.

Потом цепь разбираем, меняем конец и начало первой обмотки местами и снова собираем. Как и в прошлый раз, результаты измерений заносим в таблицу.
Далее опять повторяем операцию, поменяв местами концы второй обмотки
Повторяем подобные действия столько раз, сколько имеется возможных схем включения. Главное, аккуратно и точно снимать показания с прибора. Для точности, весь цикл измерений стоит повторить дважды.После заполнения таблицы сравниваем результаты измерений.
Правильной будет схема с наименьшим измеренным сопротивлением.

Включение трехфазного двигателя в однофазную сеть.

Случается необходимость, когда трехфазный двигатель надо включить в обычную бытовую розетку (однофазную сеть). Для этого, способом сдвига фазы при помощи конденсатора, принудительно создают третью фазу.

На рисунке показано подключение двигателя по схеме «треугольник» и "звезда". На один вывод подключают «ноль», на второй фазу, к третьему выводу также подключают фазу, но через конденсатор. Для вращения вала двигателя в нужную сторону применяют пусковой конденсатор, который включается в сеть параллельно рабочему.
При напряжении сети 220 В и частоте 50 Гц емкость рабочего конденсатора в мкФ рассчитываем по формуле, Сраб = 66 Рном , где Рном – номинальная мощность двигателя в кВт.
Ёмкость пускового конденсатора рассчитывают по формуле, Спуск = 2 Сраб = 132 Рном .
Для пуска не очень мощного двигателя (до 300 Вт) пусковой конденсатор может и не понадобиться.

Магнитный пускатель.

Включение электродвигателя в сеть при помощи обычного выключателя, дает ограниченную возможность регулирования.
Кроме того, в случае аварийного отключения электроэнергии (например, перегорают предохранители), машина перестает работать, но после починки сети двигатель запускается уже без команды человека. Это может привести к несчастному случаю.
Необходимость защиты от исчезновения тока в сети (электрики говорят НУЛЕВОЙ ЗАЩИТЫ) привела к изобретению магнитного пускателя. В принципе, это схема с использованием, уже описанного нами, реле.
Для включения машины используем контакты реле «К» и кнопку S1.
При нажатии на кнопку цепь катушки реле «К» получает питание и контакты реле К1 и К2 замыкаются. Двигатель получает питание и работает. Но, отпустив кнопку, схема перестает работать. Поэтому один из контактов реле «К» используем для шунтирования кнопки.
Теперь, после размыкания контакта кнопки, реле не теряет питание, а продолжает удерживать свои контакты в замкнутом положении. И для выключения схемы используем кнопку S2.
Правильно собранная схема после отключения сети не включится до тех пор, пока человек не даст на это команду.

Монтажные и принципиальные схемы.

В предыдущем параграфе мы начертили схему магнитного пускателя. Эта схема является принципиальной . Она показывает принцип работы устройства. В ней задействованы элементы, используемые в данном устройстве (схеме). Несмотря на то, что реле или контактор может иметь большее число контактов, вычерчиваются только те, которые будут задействованы. Провода рисуются, по возможности, прямыми линиями и не в натуральном исполнении.
Наряду с принципиальными схемами, используют монтажные схемы. Их задача показать, как должны монтироваться элементы электрической сети или устройства. Если реле имеет несколько контактов, то все контакты обозначаются. На чертеже они ставятся так, как будут стоять после монтажа, места присоединения проводов рисуются там, где они действительно должны крепиться, и т.п. Ниже, на левом рисунке показан пример принципиальной электрической схемы, а на правом рисунке монтажная схема того же самого устройства.


Силовые цепи. Цепи управления.

Владея знаниями, мы можем быстро рассчитать необходимое сечение проводов . Мощность двигателя несоизмеримо выше мощности катушки реле. Поэтому провода, ведущие к основной нагрузке, всегда толще, чем провода, ведущие к управляющим аппаратам.
Введём понятие силовых цепей и цепей управления.
К силовым цепям относятся все части, ведущие ток к нагрузке (провода, контакты, измерительные и контролирующие приборы). На схеме они выделены "жирными" линиями. Все провода и аппаратура управления, контроля и сигнализации относятся к цепям управления. На схеме они выделены пунктиром.

Как собирать электрические схемы.

Одной из сложностей в работе электрика является понимание того, как взаимодействуют элементы схемы между собой. Необходимо уметь читать, понимать и собирать схемы.
При сборке схем следуйте необременительным правилам:
1. Сборку схемы следует проводить в одном направлении. Например: собираем схему по часовой стрелке.
2. При работе со сложными, разветвленными схемами, удобно разбить ее на составные части.
3. Если в схеме много разъемов, контактов, соединений, удобно разбить схему на участки. Например, сначала собираем цепь от фазы до потребителя, потом собираем от потребителя к другой фазе, и т.д.
4. Сборку схемы следует начинать от фазы.
5. Каждый раз, выполнив присоединение, задавайте себе вопрос: А что произойдёт, если напряжение подать сейчас?
В любом случае, после сборки у нас должна получиться замкнутая цепь: Например, фаза розетки - разъем контакта выключателя – потребитель – «ноль» розетки.
Пример: Попробуем собрать самую распространенную в быту схему – подключить домашнюю люстру из трёх плафонов. Используем двухклавишный выключатель.
Для начала определимся для самих себя, как люстра должна работать? При включении одной клавиши выключателя должна зажечься одна лампа в люстре, при включении второй клавиши загораются две другие.
На схеме можно видеть, что и на люстру и на выключатель идут по три провода, в то время как от сети идет всего лишь пара проводов.
Для начала, при помощи индикаторной отвертки, находим фазу и подсоединяем её к выключателю (ноль прерывать нельзя ). То, что от фазы к выключателю идут два провода не должно нас смущать. Место соединения проводов мы выбираем сами. Провод мы привинчиваем к общей шине выключателя. От выключателя пойдут два провода и, соответственно, будут смонтированы две цепи. Один из этих проводов присоединяем к патрону лампы. Из патрона выводим второй провод, и соединяем его с нулем. Цепь одной лампы собрана. Теперь, если включить клавишу выключателя, лампа загорится.
Второй провод, идущий от выключателя соединяем с патроном другой лампы и, так же как и в первом случае, провод из патрона подключаем к нулю. При попеременном включении клавиш выключателя будут загораться разные лампы.
Осталось присоединить третью лампочку. Ее мы соединяем параллельно к одной из готовых цепей, т.е. из патрона подключенной лампы выводим провода и соединяем с патроном последнего источника света.
Из схемы видно, что один из проводов в люстре общий. Обычно он отличается от двух других проводов цветом. Как правило, не составляет труда, не видя проводов скрытых под штукатуркой, правильно подключить люстру.
Если все провода одинакового цвета, то поступаем следующим образом: соединим один из проводов с фазой, а другие поочередно прозваниваем индикаторной отвёрткой. Если индикатор светится по-разному (в одном случае ярче, а в другом более тускло), значит мы выбрали не «общий» провод. Меняем провод и повторяем действия. Индикатор должен светиться одинаково ярко при «прозвонке» обоих проводов.

Защита схем

Львиную долю стоимости любого агрегата составляет цена двигателя. Перегрузка двигателя приводит к его перегреву и последующему выходу из строя. Защите двигателей от перегрузок уделяется большое внимание.
Мы уже знаем, что при работе двигатели потребляют ток. При нормальной работе (работе без перегрузок) двигатель потребляет нормальный (номинальный) ток, при перегрузке двигатель потребляет ток в очень больших количествах. Мы можем контролировать работу двигателей с помощью устройств, которые реагируют на изменение тока в цепи, например, реле максимального тока и теплового реле.
Реле максимального тока (его часто называют «магнитным расцепителем») представляет собой несколько витков очень толстого провода на подвижном сердечнике нагруженным пружиной. Реле устанавливается в цепь последовательно нагрузке.
Ток протекает по проводу обмотки и создает вокруг сердечника магнитное поле, которое пытается сдвинуть его с места. При нормальных условиях работы двигателя сила пружины, удерживающей сердечник, больше магнитной силы. Но, при увеличении нагрузки на двигатель (например, хозяйка положила в стиральную машину белья больше, чем того требует инструкция) ток увеличивается и магнит «пересиливает» пружину, сердечник смещается и воздействует на привод размыкающего контакта, сеть размыкается.
Реле максимального тока с рабатывает при резком увеличении нагрузки на электродвигатель (перегрузке). Например, произошло короткое замыкание, заклинивает вал машины, и т.п. Но бывают случаи, когда перегрузка незначительна, но действует продолжительное время. В такой ситуации двигатель перегревается, изоляция проводов оплавляется и, в конце концов, двигатель выходит из строя (сгорает). Для предотвращения развития ситуации по описанному сценарию, используют тепловое реле, которое представляет собой электромеханическое устройство с биметаллическими контактами (пластинами), пропускающими через себя электрический ток.
При увеличении тока выше номинального значения нагрев пластин увеличивается, пластины изгибаются и размыкают свой контакт в цепи управления, прерывая ток к потребителю.
Для подбора аппаратуры защиты можно воспользоваться таблицей № 15.

ТАБЛИЦА № 15

I ном автомата

I магнитного расцепителя

I ном теплового реле

S алюм. жилы

Автоматика

В жизни мы часто сталкиваемся с устройствами, название которых объединяется под общим понятием - «автоматика». И хотя такие системы разрабатывают очень умные конструкторы, обслуживают их простые электрики. Не следует пугаться этого термина. Оно означает всего лишь «БЕЗ УЧАСТИЯ ЧЕЛОВЕКА».
В автоматических системах человек дает только начальную команду всей системе и иногда отключает ее для обслуживания. Всю остальную работу на протяжении очень продолжительного времени система проделывает сама.
Если внимательно присмотреться к современной технике, то можно увидеть большое количество автоматических систем, которые ею управляют, сводя вмешательство человека в этот процесс к минимуму. В холодильнике автоматически поддерживается определенная температура, а в телевизоре заданная частота приема, свет на улице загорается с наступлением сумерек и гаснет на рассвете, дверь в супермаркете открывает перед посетителями, а современные стиральные машинки «самостоятельно» выполняют весь процесс стирки, полоскания, отжима и сушки белья. Примеры можно приводить бесконечно.
По своей сути, все схемы автоматики повторяют схему обычного магнитного пускателя, в той или иной степени улучшая его быстродействие или чувствительность. В уже известную схему пускателя вместо кнопок «ПУСК» и «СТОП» вставляем контакты В1 и В2, которые срабатывают от различных воздействий, например, температуры и получим автоматику холодильника.


При повышении температуры включается компрессор и гонит охладитель в морозилку. Когда температура опустится до нужного (заданного) значения, другая такая кнопка отключит насос. Выключатель S1 в этом случае играет роль ручного выключателя, для выключения схемы, например, на время технического обслуживания.
Эти контакты называются «датчиками » или «чувствительными элементами ». Датчики имеют различную форму, чувствительность, возможности настройки и назначение. Например, если перенастроить датчики холодильника и, вместо компрессора подключить обогреватель, то получится система поддержания тепла. А, подключив светильники – получим систему поддержания освещенности.
Таких вариаций может быть бесконечно много.
В целом, назначение системы определяется назначением датчиков . Поэтому в каждом отдельном случае применяются различные датчики. Изучение каждого конкретного чувствительного элемента не имеет большого смысла, так как они постоянно совершенствуются и изменяются. Целесообразнее понять принцип действия датчиков вообще.

Освещение

В зависимости от выполняемых задач освещение делится на следующие виды:

  1. Рабочее освещение - обеспечивает нужную освещенность на рабочем месте.
  2. Охранное освещение - устанавливается вдоль границ охраняемых участков.
  3. Аварийное освещение - предназначается для создания условий безопасной эвакуации людей при аварийном отключении рабочего освещения в помещениях, проходах и лестницах, а также для продолжения работ там, где эти работы останавливать нельзя.

И что бы мы делали без обычной лампочки Ильича? Раньше, на заре электрификации нам светили лампы с угольными электродами, но они быстро перегорали. Позже стали применять вольфрамовые нити, при этом из колб ламп откачивался воздух. Такие лампы работали дольше, но были опасными из-за возможности разрыва колбы. Внутрь колб современных ламп накаливания закачивают инертный газ, такие лампы безопаснее своих предшественниц.
Выпускаются лампы накаливания с колбами и цоколями разной формы. Все лампы накаливания имеют ряд преимуществ, обладание которыми гарантирует их использование еще долгое время. Перечислим эти преимущества:

  1. Компактность;
  2. Способность работать как при переменном, так и постоянном токе.
  3. Не подверженность влиянию окружающей среды.
  4. Одинаковая светоотдача в течение всего срока службы.

Наряду с перечисленными преимуществами эти лампы имеют очень малый срок службы (примерно 1000 часов).
В настоящее время, благодаря повышенной светоотдаче, широкое применение нашли галогенные лампы накаливания трубчатой формы.
Случается, что лампы перегорают неоправданно часто и, казалось бы, без всяких причин. Подобное может происходить из-за резких скачков напряжения в сети, при неравномерном распределении нагрузок в фазах, а также по некоторым другим причинам. Этому «безобразию» можно положить конец, если заменить лампу на более мощную и включить в цепь дополнительный диод, позволяющий снизить напряжение в цепи наполовину. При этом более мощная лампа будет светить так же, как и предыдущая, без диода, но срок её службы увеличится вдвое, а потребление электроэнергии, как и плата за неё, останутся на прежнем уровне.

Трубчатые люминесцентные ртутные лампы низкого давления

по спектру излучаемого света делятся на следующие типы:
ЛБ - белая.
ЛХБ - холодно-белая.
ЛТБ - тепло-белая.
ЛД - дневная.
ЛДЦ – дневная, правильной цветопередачи.
Люминесцентные ртутные лампы имеют следующие преимущества:

  1. Высокая светоотдача.
  2. Большой срок службы (до 10 000 часов).
  3. Мягкий свет
  4. Широкий спектральный состав.

Наряду с этим люминесцентные лампы имеют и ряд недостатков, таких как:

  1. Сложность схемы подключения.
  2. Большие размеры.
  3. Невозможность применения ламп, предназначенных для переменного тока, в сети постоянного тока.
  4. Зависимость от температуры окружающего воздуха (при температуре ниже 10 градусов Цельсия зажигание ламп не гарантируется).
  5. Снижение светоотдачи к концу службы.
  6. Вредные для глаза человека пульсации (их можно снизить только совместным применением нескольких ламп и использованием сложных схем включения).

Дуговые ртутные лампы высокого давления

обладают большей светоотдачей и применяются для освещения больших пространств и площадей. К преимуществам ламп можно отнести:

  1. Большой срок службы.
  2. Компактность.
  3. Устойчивость к условиям внешней среды.

Перечисленные ниже недостатки ламп сдерживают их применение в бытовых целях.

  1. В спектре ламп преобладают сине-зеленые лучи, что приводит к неправильному восприятию цвета.
  2. Лампы работают только на переменном токе.
  3. Лампу можно включить только через балластный дроссель.
  4. Длительность загорания лампы при включении доходит до 7 минут.
  5. Повторное зажигание лампы, даже после кратковременного отключения, возможно лишь после её, практически полного, остывания (т.е., примерно, через 10 минут).
  6. Лампы имеют значительные пульсации светового потока (большие, чем у люминесцентных ламп).

Последнее время все чаще находят применение металлогалоидные (ДРИ) и металлогалоидные зеркальные (ДРИЗ) лампы, имеющие лучшую цветопередачу, а также натриевые лампы (ДНАТ), которые излучают золотисто-белый свет.

Электрическая проводка.

Различают три вида проводки.
Открытая – проложенная по поверхностям стен перекрытий и других элементов зданий.
Скрытая – проложенная внутри конструктивных элементов зданий, в том числе и под съемными панелями, полами и потолками.
Наружная – проложенная по наружным поверхностям зданий, под навесами, в том числе и между зданиями (не более 4 пролетов по 25 метров, вне дорог и линий электропередачи).
При открытом способе проводки необходимо соблюдать следующие требования:

  • По сгораемым основаниям под провода кладут листовой асбест толщиной не менее 3 мм с выступанием листа из-за краев провода не менее 10 мм.
  • Крепить провода с разделительной перегородкой можно гвоздями с подкладыванием под шляпку эбонитовых шайб.
  • При повороте провода на ребро (т.е. на 90 градусов), вырезается разделительная пленка на расстояние 65 – 70 мм и ближняя к повороту жила изгибается внутрь поворота.
  • При креплении оголённых проводов на изоляторах, последние должны устанавливаться юбкой вниз, независимо от места их крепления. Провода в этом случае должны быть недосягаемы для случайного прикосновения.
  • При любом способе прокладки проводов необходимо помнить, что линии проводки должны быть только вертикальными или горизонтальными и параллельными архитектурным линиям здания (исключение возможно для скрытой проводки, прокладываемой внутри конструкций толщиной более 80 мм).
  • Трассы для питания розеток располагаются на высоте установки розеток (800 или 300 мм от пола) или в углу между перегородкой и верхом перекрытия.
  • Спуски и подъемы к выключателям и светильникам выполняют только вертикально.

Электроустановочные устройства крепятся:

  • Выключатели и переключатели на высоте 1,5 метра от пола (в школьных и дошкольных учреждениях 1,8 метра).
  • Штепсельные соединители (розетки) на высоте 0,8 – 1 м от пола (в школьных и дошкольных учреждениях 1,5 метра)
  • Расстояние от заземленных устройств должно быть не менее 0,5 метра.
  • Надплинтусные розетки, устанавливаемые на высоте 0,3 метра и ниже должны иметь защитное устройство, закрывающее гнезда при вынутой вилке.

При подключении электроустановочных устройств, необходимо помнить, что ноль разрывать нельзя. Т.е. к выключателям и переключателям должна подходить только фаза, и подсоединяться она должна к неподвижным частям устройства.
Провода и кабели маркируются буквами и цифрами:
Первая буква обозначает материал жил:
А – алюминиевые; АМ – алюмомедные; АС – из алюминиевого сплава. Отсутствие буквенных обозначений означает, что жилы медные.
Следующие буквы обозначают тип изоляции жил:
ПП – плоский провод; Р – резина; В – поливинилхлорид; П – полиэтилен.
Наличие последующих букв говорит о том, что мы имеем дело не с проводом, а с кабелем. Буквы обозначают материал оболочки кабеля: А - алюминиевая; С – свинцовая; Н – найритовая; П - полиэтиленовая; СТ- стальная гофрированная.
Изоляция жил имеет обозначение, подобное проводам.
Четвертые буквы от начала говорят о материале защитного покрова: Г – без покрова; Б – бронированная (стальная лента).
Цифры в обозначениях проводов и кабелей обозначают следующее:
Первая цифра – число жил
Вторая цифра – сечение жилы в кв. мм.
Третья цифра– номинальное напряжение сети.
Например:
АМППВ 2х3-380 – провод с алюмомедными жилами, плоский, в поливинилхлоридной изоляции. Жилы две сечением по 3 кв. мм. каждая, рассчитан на напряжение 380 вольт, или
ВВГ 3х4-660 – провод с 3-мя медными жилами сечением по 4 кв. мм. каждая в поливинилхлоридной изоляции и такой же оболочке без защитного покрова, расчитан на 660 вольт.

Оказание доврачебной помощи пострадавшему при поражении электрическим током.

При поражении человека электрическим током необходимо принять срочные меры для быстрейшего освобождения пострадавшего от его воздействия и немедленного оказания пострадавшему медицинской помощи. Даже малейшее промедление в оказании такой помощи может привести к летальному исходу. Если невозможно отключить напряжение, пострадавшего следует освободить от токоведущих частей. Если поражение человека произошло на высоте, перед отключением тока принимают меры для предотвращения падения пострадавшего (человека принимают на руки или натягивают под местом предполагаемого падения брезент, прочную ткань, или же подкладывают мягкий материал). Для освобождения пострадавшего от токоведущих частей при напряжении сети до 1000 Вольт используют сухие подручные предметы, такие как деревянный шест, доску, одежду, канат или другие непроводящие ток материалы. Оказывающий помощь должен применять электрозащитные средства (диэлектрические коврик и перчатки) и браться только за одежду пострадавшего (при условии, что одежда сухая). При напряжении более 1000 Вольт для освобождения пострадавшего нужно пользоваться изолирующей штангой или клещами, при этом спасающий должен надеть диэлектрические боты и перчатки. Если пострадавший находится в бессознательном состоянии, но с сохранившимся устойчивым дыханием и пульсом, его следует удобно уложить на ровную поверхность, расстегнуть одежду, привести в сознание, дав понюхать нашатырный спирт и обрызгав его водой, обеспечить приток свежего воздуха и полный покой. Незамедлительно и одновременно с оказанием первой медицинской помощи следует вызывать врача. Если пострадавший дышит плохо, редко и судорожно, или дыхание не отслеживается, следует незамедлительно приступить к СЛР (сердечно-лёгочной реанимации). Искусственное дыхание и непрямой массаж сердца следует производить непрерывно до прибытия врача. Вопрос о целесообразности или бесперспективности дальнейшего проведения СЛР решается ТОЛЬКО врачом. Вы должны уметь проводить СЛР.

Устройство защитного отключения (УЗО).

Устройства защитного отключения предназначены для защиты человека от поражения электрическим током в групповых линиях, питающих штепсельные розетки. Рекомендованы для установки в цепях питания жилых помещений, а так же любых других помещений и объектов, где могут находиться люди или животные. Функционально, УЗО состоит из трансформатора, первичные обмотки которого подключены к фазным (фазному) и нейтральному проводникам. К вторичной обмотке трансформатора подключено поляризованное реле. При нормальной работе электрической цепи векторная сумма токов через все обмотки равна нулю. Соответственно равно нулю и напряжение на выводах вторичной обмотки. В случае возникновения утечки «на землю» сумма токов изменяется и во вторичной обмотке возникает ток, вызывающий срабатывание поляризованного реле, размыкающего контакт. Раз в три месяца рекомендуется проверять работоспособность УЗО, нажатием на кнопку «ТЕСТ». УЗО подразделяются на низкочувствительные и высокочувствительные. Низкочувствительные (токи утечки 100, 300 и 500 мА) для защиты цепей, не имеющих непосредственного контакта с людьми. Они срабатывают при повреждении изоляции электрооборудования. Высокочувствительные УЗО (токи утечки 10 и 30 мА) рассчитаны на защиту, когда возможно прикосновение к оборудованию обслуживающего персонала. Для комплексной защиты людей, электрооборудования и электропроводки, кроме того, выпускаются, дифференциальные автоматические выключатели, выполняющие функции, как устройства защитного отключения, так и автоматического выключателя.

Схемы выпрямления тока.

В некоторых случаях возникает необходимость преобразовать переменный ток в ток постоянный. Если рассматривать переменный электрический ток в виде графического изображения (например, на экране осциллографа), увидим синусоиду, пересекающую ординату с частотой колебаний равной частоте тока в сети.

Для выпрямления переменного тока используют диоды (диодные мосты). Диод, обладает одним интересным свойством – пропускать ток только в одном направлении (он, как бы «срезает» нижнюю часть синусоиды). Различают следующие схемы выпрямления переменного тока. Однополупериодная схема, на выходе которой получается пульсирующий ток равный половине напряжения сети.

Двухполупериодная схема, образуемая диодным мостом из четырёх диодов, на выходе которого мы будем иметь постоянный ток сетевого напряжения.

Трехполупериодная схема, образуется мостом, состоящим из шести диодов в трехфазной сети. На выходе мы будем иметь две фазы постоянного тока с напряжением Uв=Uл х 1,13.

Трансформаторы

Трансформатором является устройство, служащее для преобразования переменного тока одной величины в такой же ток другой величины. Преобразование происходит в результате передачи магнитного сигнала от одной обмотки трансформатора к другой по металлическому сердечнику. Для уменьшения потерь при преобразовании сердечник набирается пластинами из специальных ферромагнитных сплавов.


Расчет трансформатора прост и, по своей сути, представляет собой решение соотношения, основной единицей которого является коэффициент трансформации:
К = U п/ U в = W п/ W в , где U п и Uв – соответственно, первичное и вторичное напряжение, W п и W в – соответственно, число витков первичной и вторичной обмоток.
Проанализировав данное соотношение можно увидеть, что нет никакой разницы в направлении работы трансформатора. Дело лишь в том, какую обмотку принять за первичную.
Если одну из обмоток (любую), подключить к источнику тока (в этом случае она будет первичной) то на выходе вторичной обмотки будем иметь большее напряжение, если число её витков больше, чем у первичной обмотки, либо меньшее, если число её витков меньше, чем у первичной обмотки.
Часто возникает необходимость изменить напряжение на выходе трансформатора. Если «не хватает» напряжения на выходе трансформатора, надо к вторичной обмотке добавить витков провода и, соответственно, наоборот.
Расчет дополнительного числа витков провода производится следующим образом:
Для начала необходимо узнать, какое напряжение приходится на один виток обмотки. Для этого разделим рабочее напряжение трансформатора на количество витков обмотки. Допустим, трансформатор имеет 1000 витков провода во вторичной обмотке и 36 вольт на выходе (а нам надо, например, 40 вольт).
U = 36/1000= 0,036 вольт в одном витке.
Для того, чтобы получить на выходе трансформатора 40 вольт надо к вторичной обмотке добавить 111 витков провода.
40 – 36 / 0,036 = 111 витков,
Следует понимать, что разницы расчётов первичной и вторичной обмоток нет. Просто в одном случае обмотки добавляются, в другом, вычитаются.

Приложения. Выбор и применение защитной аппаратуры.

Автоматические выключатели обеспечивают защиту устройств от перегрузки или короткого замыкания и выбираются исходя из характеристик электропроводки, размыкающей способности выключателей, значения номинального тока и характеристики отключения.
Размыкающая способность должна соответствовать значению тока в начале защищаемого участка цепи. При последовательном включении допускается использование устройства с низким значением тока короткого замыкания, если до него ближе к источнику питания установлен автоматический выключатель с током отсечки мгновенного размыкателя ниже, чем у последующих устройств.
Номинальные токи выбираются таким образом, чтобы их значения были как можно ближе к расчетным или номинальным токам защищаемой цепи. Характеристики отключения определяются с учетом того, что кратковременные перегрузки, вызванные пусковыми токами, не должны вызывать их срабатывания. Кроме того, следует учитывать, что выключатели должны иметь минимальное время отключения в случае возникновения короткого замыкания на конце защищаемой цепи.
Прежде всего необходимо определить максимальное и минимальное значения тока короткого замыкания (КЗ). Максимальный ток КЗ определяется из условия, когда замыкание происходит непосредственно на контактах автоматического выключателя. Минимальный ток определяется из условия, что КЗ происходит в самом дальнем участке защищаемой цепи. КЗ может произойти как меж нулем и фазой, так и между фазами.
Для упрощенного расчета минимального тока КЗ следует знать, что сопротивление проводников в результате нагрева увеличивается до 50% от номинального значения, а напряжение источника питания снижается до 80%. Следовательно, для случая КЗ между фазами ток КЗ будет:
I = 0,8 U /(1,5р 2 L / S ), где р-удельное сопротивление проводников (для меди – 0,018 Ом кв. мм/м)
для случая короткого замыкания между нулем и фазой:
I =0,8 Uo /(1,5 р(1+ m ) L / S ), где m – соотношение площадей поперечного сечения проводов (если материал одинаковый), или соотношение сопротивлений нуля и фазы. Автомат нужно выбирать по величине номинального условного тока КЗ не меньше расчетного.
УЗО должно быть сертифицированным в России. При выборе УЗО учитывается схема подключения нулевого рабочего проводника. В системе заземления ТТ чувствительность УЗО определяется сопротивлением заземления при выбранном предельным безопасным напряжением. Порог чувствительности определяется по формуле:
I = U / Rm , где U – предельное безопасное напряжение, Rm – сопротивление заземления.
Для удобства можно воспользоваться таблицей № № 16

ТАБЛИЦА № 16

Чувствительность УЗО мА

Сопротивление заземления Ом

Предельное безопасное напряжение 25 В

Предельное безопасное напряжение 50 В

Для защиты людей используются УЗО с чувствительностью 30 или10 мА.

Предохранитель с плавкой вставкой
Ток плавкой вставки должен быть не меньше максимального тока установки с учетом длительности его протекания: I п = I макс/а , где а =2,5, если Т меньше 10 сек. и а = 1,6 если, Т больше 10 сек. I макс = I нК , где К= 5 - 7 кратность пускового тока (из паспортных данных двигателя)
Iн – номинальный ток электроустановки длительно протекающий по защитной аппаратуре
Iмакс – максимальный ток, кратковременно протекающий по аппаратуре (например пусковой ток)
Т – длительность протекания максимального тока по защитной аппаратуре (например, время разгона двигателя)
У бытовых электроустановок пусковой ток мал, при выборе вставки можно ориентироваться на Iн.
После расчетов выбирается ближайшее большее значение тока из стандартного ряда: 1,2,4,6,10,16,20,25А.
Тепловое реле.
Необходимо выбирать такое реле, чтобы Iн теплового реле оказался в пределах регулирования и больше тока сети.

ТАБЛИЦА № 16

Номинальные токи

Пределы коррекции

2,5 3,2 4,5 6,3 8 10.

5,6 6,8 10 12,5 16 25

В настоящее время, уже довольно устойчиво сложился рынок услуг , в т. ч. и в области бытовой электрики .

Высокопрофессиональные электромонтеры, с нескрываемым воодушевлением, из-за всех сил стараются помочь остальной части нашего населения, получая при этом огромное удовлетворение от качественно выполненой работы и, скромного вознаграждения. В свою очередь, наше население тоже получает огромное удовольствие, от качественного, быстрого и совершенно не дорогого, решения своих проблем.

С другой стороны, всегда существовала достаточно широкая категория граждан, принципиально считающих за честь - собственноручно решать абсолютно любые бытовые вопросы возникающие на территории собственного места проживания. Подобная позиция безусловно, заслуживает и одобрения и понимания.
Тем более, что все эти Замены, переносы, установки - выключателей, розеток, автоматов, счетчиков, светильников, подключение кухонных печей и.т.д - все эти, наиболее востребованные населением виды услуг, с точки зрения электрика-профессионала, вовсе не являются сложной работой .

И по-правде говоря, рядовой гражданин, без электротехнического образования, но имеющий достаточно подробную инструкцию, вполне может справиться с ее выполнением сам, своими руками.
Конечно, выполняя подобную работу в первый раз, начинающий электрик может потратить гораздо больше времени, нежели опытный профессионал. Но совсем не факт, что от этого она будет выполнена менее качественно, при внимательности к мелочам и отсутствии какой-либо спешки .

Первоначально, этот сайт и задумывался как подборка подобных инструкций, относительно наиболее часто возникающих проблем в этой области. Но в дальнейшем, для людей абсолютно никогда не сталкившимися с решением подобных вопросов, был добавлен курс " молодого электрика" из 6-ти практических занятий.

Особенности монтажа электрических розеток скрытой и открытой проводки. Розетки для электрической кухонной плиты. Подключение электроплиты своими руками.

Выключатели.

Замена, монтаж электрических выключателей, скрытой и открытой проводки.

Автоматы и УЗО.

Принцип работы Устройств Защитного Отключения и автоматических выключателей. Классификация автоматических выключателей.

Электрические счетчики.

Инструкция по самостоятельной установке и подключению однофазного счетчика.

Замена проводки.

Электромонтаж в помещении. Особенности монтажа,в зависимости от материала стен и вида их отделки. Электропроводка в деревянном доме.

Светильники.

Установка настенных светильников. Люстры. Монтаж точечных светильников.

Контакты и соединения.

Некоторые виды соединения проводников, наиболее чаще встречающиеся в "домашней" электрике.

Электротехника-основы теории.

Понятие электрического сопротивления. Закон Ома. Законы Кирхгофа. Параллельное и последовательное соединение.

Описание наиболее распространенных проводов и кабелей.

Иллюстрированная инструкция по работе с цифровым универсальным электроизмерительным прибором.

Про лампы - лампы накаливания, люминесцентные, светодиодные.

Про "денежку."

Профессия электрика определенно, не считалась престижной до последнего времени. Но можно было ли, назвать ее малооплачиваемой? Ниже, вы можете ознакомиться с прейскурантом, наиболее распостраненных услуг трехгодичной давности.

Электромонтаж - расценки.

Электросчетчик шт. - 650p.

Автоматы однополюсные шт. - 200p.

Автоматы трехполюсные шт. - 350p.

Дифавтомат шт. - 300p.

УЗО однофазное шт. - 300p.

Одноклавишный выключатель шт. - 150p.

Двухклавишный выключатель шт. - 200p.

Трехклавишный выключатель шт. - 250p.

Щит открытой проводки до 10 групп шт. - 3400p.

Щит скрытой проводки до 10 групп шт. - 5400p.

Прокладка открытой проводки П.м - 40p.

Проводки в гофре П.м - 150p.

Штробление в стене (бетон) П.м - 300p.

(кирпич) П.м - 200p.

Установка подразетника и распаечной коробки в бетоне шт. - 300p.

кирпиче шт. - 200p.

гипсокартоне шт. - 100p.

Бра шт. - 400p.

Точечный светильник шт. - 250p.

Люстра на крюк шт. - 550p.

Потолочная люстра (без сборки) шт. - 650p.

Установка звонка и кнопки звонка шт. - 500p.

Установка розетки, выключателя открытой проводки шт. - 300p.

Установка розетки, выключателя скрытой проводки (без установки подрозетника) шт. - 150p.

В бытность свою, электриком "по объявлению", мне не удавалось смонтировать больше, чем 6-7 точек (розеток, выключателей) скрытой проводки, по бетону - за вечер. Плюс к этому 4-5 метров штробы(по бетону). Проводим несложные арифметические вычисления: (300+150)*6=2700p. - это за розетки с выключателями.
300*4=1200р. - это за штробы.
2700+1200=3900р. - это общая сумма.

Неплохо, за 5-6 часов работы, не правда ли? Расценки, конечно, московские, по России они будут меньше, но не более, чем в два раза.
Если брать в целом, то месячный заработок электрика - монтажника, в настоящее время редко превышает 60000р.(не в Москве)

Конечно, встречаются на этом поприще и особо одаренные люди (как правило, с железным здоровьем) и практической сметкой. При определенных условиях, они ухитряются поднять свой заработок до 100000р и выше. Как правило, они имеют лицензию на производство электромонтажных работ и работают напрямую с заказчиком, беря "серьезные" подряды без участия различных посредников.
Электромонтеры - ремонтники пром. оборудования (на предприятиях), электрики - высоковольтники, как правило(не всегда) - зарабатывают несколько меньше. Если же предприятие рентабельно и на нем вкладываются средства в "перевооружение" для электриков-ремонтников могут открываться дополнительные источники заработка, например - монтаж нового оборудования производимый в нерабочее время.

Высокооплачиваемый но физически тяжелый и подчас - весьма пыльный, труд электромонтера-монтажника несомненно, достоин всяческого уважения.
Занимаясь электромонтажем, начинающий специалист может овладеть базовыми навыками и умениями, набраться начального опыта.
В независимости от того, как в дальнейшем он будет строить свою карьеру, можно быть уверенным - практические знания, полученные таким образом пригодятся обязательно.

Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Содержание:

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором - периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется , измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как . Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица - вольт . Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление , измеряемое в омах . Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока - 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и . Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким - на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов - напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность , связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит . Он означает перемещение одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты самоделок . Так было и со мной, когда я увлекся электроникой. Но как обычно бывает – первые неудачи поубавили запал. Однако отступать я не привык и начал систематически (буквально с азов) постигать таинства мира электроники. Так и родилось «руководство для начинающих технарей»

Шаг 1: Напряжение, ток, сопротивление

Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.

Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.

Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.

Напряжение является причиной, а ток – результатом.

Единица измерения сопротивления – Ом (Ω).

Шаг 2: Источник питания

Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.

  • Батареи;
  • Аккумуляторы.

Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:

Батареи 1,5 В

Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.

3В литиевая «монетка»

Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.

Никель-металлогидридные (NiМГ)

Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках .

3.7 В литий-ионные и литий-полимерные аккумуляторы

Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.

9-вольтовая батарея

Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.

Свинцово-кислотные

Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.

Последовательно-параллельное соединение батарей

Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.

Существует два важных момента относительно батарей:

Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.

Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.

Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.

Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.

Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.

С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.

Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.

Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.

Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.

Как лучше выбрать батарею для поделки ?

Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки ) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку , которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.

Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.

Шаг 3: Резисторы

Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.

Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.

Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно) 5.6MΩ.

Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:

  • с чётко заданными характеристиками;
  • общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).

Пример общих характеристик:

  • Температурный коэффициент;
  • Коэффициент напряжения;
  • Частотный диапазон;
  • Мощность;
  • Физический размер.

По своим свойствам резисторы могут быть классифицированы как:

Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.

Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.

Есть несколько типов нелинейных резисторов:

  • Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
  • Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
  • Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
  • Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.

Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.

Кроме этого, резисторы бывают с постоянным и переменным значением:

Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.

Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.

Магазин сопротивлений:

Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.

По составу резисторы бывают:

Углеродные:

Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.

Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.

Осаждения углерода:

Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.

Пленочный резистор:

Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.

Проволочный резистор:

Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.

Метало-керамические:

Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.

Прецизионные резисторы:

Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).

Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.

Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.

Плавкий резистор:

Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.

Терморезисторы:

Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.

Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.

Фоторезисторы:

Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.

Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.

Выводные и безвыводные типы резисторов:

Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.

Резисторы поверхностного монтажа:

Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.

Шаг 4: Стандартные или общие значения резисторов

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:

Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

Продолжение следует

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе. Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля. Главное - понять, что электричество - энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении.

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее - 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор. Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации. Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко - во всех видах батарей, в химической промышленности и некоторых других областях.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно. Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C. Более подробно на этот вопрос поможет ответить учебник по электромеханике. Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически - не нужны еще два нулевых провода.

Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее. Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае, когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что но- левой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции. Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

Внимание!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте. При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.