Изготовление плазмореза своими руками из инвертора. Самодельный плазмотрон - вариант газовой сварки Самодельный инверторный плазморез

В промышленности сварка при помощи плазменного аппарата применяется довольно часто, когда нужно проводить процедуры с высокой температурой. Несмотря на всю сложность построения процесса и его особый принцип действия, плазменная сварка своими руками вполне возможна. Главным температурным источником здесь является плазма, которая получается путем перехода в новое агрегатное состояние одного из горючих газов. Это происходит в устройстве, которое носит название плазмотрон.

Данная разновидность отлично подходит для работы со всеми металлами, так как помимо высокой температуры плазма является еще и дополнительной защитой. Самодельная плазменная сварка может работать с нержавеющей сталью, алюминием и даже с тугоплавкими металлами. Несмотря на то, что чаще всего используют данную технологию в современных высокотехнологичных областях, таких как авиационная промышленность, периодически возникает потребность в высокотемпературной сварке и в других областях. Соответственно, плазменная сварка своими руками становится все более востребованной для менее ответственных мест применения.

Одной из особенностей такого метода является высокая глубина проплавления металла. Высокая температура плазмы, достигающая нескольких десятков тысяч градусов Цельсия, позволяет проплавлять металл до 1 см за один проход. Сварка может вестись в любом пространственном положении, поэтому, здесь представлен универсальный метод соединения.

Режимы плазменной сварки

Данная технология чаще всего применяется для работы с тугоплавкими металлами, такими как титан, медь и прочие. Чтобы добиться высокого качества соединения, следует учитывать не только свойства самих металлов, но и условия проведения сварочного процесса плазмой. Чтобы все прошло максимально надежно, следует ориентироваться по следующим режимам:

l cв, А U д, В v св, м/ч Расход используемого газа Q г, л/мин
Для образования плазмы Для защиты Для поддува
139 22 30 2,1 1,5 …2,0 3,5.. .4,0
6 240 23 14 5,5 9.4
380 28 15 3,5 10,5 42
13 450 28.. .30 103 8 6… 12

Схема плазменного аппарата

Чтобы сделать плазменную сварку своими руками, чертежи являются одним из основных моментов, так как в них содержатся все основные конструкционные элементы. Вне зависимости от того, из каких деталей вы собираетесь делать технику, схема помогает определить самые мелкие компоненты, которые должны туда входить. Здесь приведена силовая схема плазмотрона:

Схема плазмотрона — силовая часть

Плазморез является основной особенностью таких установок, так как в нем образуется плазма. В нем же заключается и основная сложность, когда создается плазменная сварка своими руками из инвертора. Здесь представлена схема управления данным устройством:

Схема плазмотрона — система управления

Оборудование для сбора плазменного аппарата

Для создания работоспособного аппарата понадобится:

  • , к примеру, для ;
  • Баллон с аргоном;
  • Редуктор для баллона;
  • Сопло с электродом из вольфрама;
  • Фторопластовая трубка;
  • Пруток из молибдена или тантала;
  • Медные трубки;
  • Балласт электронный;
  • Проводка;
  • Хомуты;
  • Листовая медь толщиной до 2 мм;
  • Клеммы;
  • Гермоввод;
  • Резиновый шланг;
  • Выпрямительный блок питания.

Процесс сборки

Особенности плазменной сварки требуют точного проведения процедур, чтобы в итоге получить надежное и безопасное устройство. Сопло для данного аппарата вытачивается из меди, так как в ином случае его придется часто менять. Вместо меди можно применять титан, который прослужит намного дольше. Размер отверстия в сопле выбирается опытным путем. Как правило, начинают с минимальных значений в 0,5 мм и постепенно доходят до 2 мм.

Размер конусного зазора между анодом на сопле и вольфрамовым катодом должен составлять до 3 мм. Сопло вкручивают в полную рубашку охлаждения. Она должна быть соединена с центральным электродом, для чего используется фторопластовый изолятор. Для охлаждения в рубашке используется жидкость, которая должна постоянно циркулировать жидкость или антифриз. Данное устройство состоит из двух полых медных труб. Диаметр внутренней составляет около 2 см. Она находится на переднем конце внешней трубки, диаметр которой составляет 5 см, а длина около 8 см.

Пространство, которое находится между внутренней и наружной трубой следует запаять при помощи листовой меди. Медные трубки малого диаметра впаиваются в рубашку охлаждения. Именно по ним впоследствии будет циркулировать жидкость.»

Положительный заряд на эту систему будет подаваться на специальную клемму, которую также следует припаять к корпусу. На внутренней трубе создается резьба, куда ставится потом съемное сопло, производимое из термостойких материалов. Внутренняя резьба нарезается также на выдвинутом конце наружной трубы. К ней привинчивается фторопластовое кольцо для изоляции. На нем располагается кольцо центрального электрода.

Труба подачи аргона впивается через стену трубы между изолятором и рубашкой охлаждения. Для питания системы используется насос на 12В. Положительный заряд подается на систему с основного источника питания. Балласт служит для ограничения тока в системе. Чтобы возбудить дежурную дугу соплом или вольфрамовым электродом требуется использовать осциллятор, или если его не имеется, то все можно проделать обычным контактным способом.

Плазменный резак часто используется сварщиками, когда нужно осуществлять резку металлических изделий. Совсем не обязательно использовать покупные изделия, которые продаются отдельно. Можно сделать плазморез из сварочного инвертора своими руками. Такой инструмент может хорошо подойти для бытового использования. Он обеспечивает рез высокого качества с тонким слоем прорезания. С его помощью можно осуществлять обработку различных заготовок с высоким уровнем аккуратности.

Если вы решили сделать самодельный плазморез из сварочного инвертора, то в первую очередь следует обратить на силу тока. Его величина определяется источником питания. В данном случае инвертор является намного более предпочтительным вариантом, чем трансформатор, так как он предлагает более стабильную работу. Также у него экономичное энергопотребление, в отличие от прямого конкурента. Естественно, что по такому параметру, как толщина прорезаемой заготовки он уступает трансформатору. Во всех остальных параметрах инвертор оказывается более удобным. Он не столь массивен и габаритен, а коэффициент полезного действия у него заметно выше. Все это сказывается на качестве работы.

Чтобы собрать конструкцию полностью, можно применять готовые детали, которые продаются в соответствующих магазинах. Вполне возможно, что все комплектующие уже могут быть в наличии дома. Во время сборки нужно четко придерживаться схемы, а также построения отдельных ее элементов. Сопло желательно подбирать подлиннее, но не слишком длинное, так как со временем его нужно будет заменять из-за высокого износа.

Схема работы плазмореза

Плазморез из сварочного инвертора позволяет данному виду техники выполнять свое основное предназначение, а именно, подавать сильно разогретый воздух на металлические изделия. Температура может достигать более тысячи градусов, что приводит к нагреву кислорода. В результате нагрева он поступает на поверхность металлического изделия под давлением. Это приводит к разрезанию металла. Чтобы ускорить данную процедуру, следует обеспечить дополнительную ионизацию среды электрическим током.

Схема плазменного инвертора, его силовой части выглядит следующим образом:

Схема плазменного инвертора (управления аппаратом) имеет следующий вид:

Конструкция плазмореза

Плазморез из сварочного инвертора можно сделать при наличии следующих деталей:

  • Компрессор – устройство, которое обеспечивает подачу мощного воздушного потока под давлением;
  • Плазмотрон – выглядит как обыкновенной сварочный резак, с его помощью производятся все основные процедуры по резке;
  • Электроды – с их помощью оснащаются некоторые виды техники, они служат для розжига дуги;
  • Сопло – это наиболее функциональный конструктивный элемент инверторного плазмореза, так как оно дает возможность определить вариант сложности работ, исходя из своей формы и других параметров;
  • Плазморез – элемент, выполняемый в виде косвенного или прямого воздействия.

Конструктивные элементы для сборки

Перед тем как самому сделать плазморез из сварочного инвертора, следует определиться с конструктивными элементами, так как их следует правильно подобрать.

Первым делом нужно обратить внимание на источник питания. В данном случае им выступает . Он обеспечивает подачу тока с заданными характеристиками на устройство. При отсутствии инвертора можно воспользоваться обыкновенным трансформатором.

Плазмотрон является основным элементом в конструкции, так что его подбирают с особой тщательностью. Мощность воздушного компрессора должна быть достаточно высокой, чтобы можно было резать достаточно толстые заготовки. Здесь нужно еще позаботиться о достаточной длине шлангов, чтобы процесс проходил удобно на любом расстоянии

Для плазмотрона нужно подобрать соответствующий электрод, который был бы сделан из подходящего материала. Наиболее подходящим вариантом является торий, бериллий, гафний и цирконий. Эти виды металла хорошо подходят по той причине, что во время нагрева они создают тугоплавкие пленки оксида на своей поверхности. Это обеспечивает высокий уровень защиты и предотвращает инструменты от разрушения.

От характеристик сопла зависит общий результат работы и ее качество. Одним из лучших вариантов является сопло с диаметром около 3 см. Длина влияет на качество и аккуратность исполнения разреза. Но если оно будет слишком длинным, то это приведет к его быстрому разрушению.

Ни один плазморез не обходится без компрессора. Он не только подает воздух под давлением, но и может служить как дополнительная система охлаждения.

Процесс изготовления резака своими руками

Плазморез из сварочного аппарата своими руками сделать не так уж сложно, при наличии соответствующих инструментов и материалов. Когда все элементы правильно подобраны и подготовлены к сборке, то можно приступать к сборке. Чтобы соединить компрессор, плазмотрон и источник питания, необходимо использовать особый кабель-шланговый пакет. В данном деле главное соблюдать правильный порядок.

  1. Проверяется работоспособность сварочного инвертора, а затем от при помощи кабеля подключается к электроду, что обеспечивает создание дуги.
  2. Сжатый воздух подается от компрессора через шланг.
  3. Шланг соединяет компрессор и плазмотрон, который должен преобразовывать струю воздуха в плазму для резки.

Если все уже собрано, следует проверить работоспособность аппарата. Когда техника включена, то инвертор должен подавать высокочастотный ток на плазмотрон. В этот момент в зажигается дуга и ее температура может составлять, примерно, 6-8 тысяч градусов. Из патрубка подается воздух, который проходит через электрическую дугу. Его объем начинает увеличиваться до 100 раз. На данном этапе происходит ионизация электрической дуги.

Вся субстанция выводится из сопла, которое помогает сформировать узкий поток рабочей среды. Скорость подачи потока составляет до 3 м/с. В это же время рабочая температура повышается до 30 тысяч градусов Цельсия, что создает плазму. Когда плазма соприкасается с деталью, то дежурная дуга начинает гаснуть, а вместо нее зажигается режущая. Благодаря потоку воздуха все расплавленные детали металла сдуваются. Это обеспечивает получение аккуратного шва.

Во время работы следует обращать внимание, чтобы пятно дуги располагалось непосредственно по центру электрода. Чтобы поддерживать все в стабильном состоянии, здесь используется тангенциальная подача воздуха. Если во время работы произошли какие-либо нарушения воздушного потока, то качество резки начнет сильно ухудшаться.

Заключение

Как стало видно, создать плазморез из сварочного инвертора своими руками не составляет большого труда. Для этого может подойти практически любой доступный источник питания, будь то или отечественные. При самостоятельном создании используются зачастую покупные конструктивные элементы, что делает сам процесс более безопасным. Здесь не так уж много элементов для сборки и подобрать их по необходимым параметрам для специалистов не составит особого труда.

Современные инверторные сварочные аппараты покрывают большинство потребностей для получения неразъемных соединений металлических заготовок. Но в ряде случаев куда более удобным будет аппарат несколько иного типа, в котором основную роль играет не электрическая дуга, а поток ионизированного газа, то есть плазменный сварочный аппарат. Приобретать его для периодического использования не слишком рентабельно. Можно сделать такой сварочный аппарат своими руками.

Оборудование и компоненты

Изготовить микроплазменный сварочный аппарат проще всего на основе уже имеющегося инверторного сварочного аппарата. Для выполнения такой модернизации вам понадобятся следующие компоненты:

  • любой инверторный сварочный аппарат для TIG сварки со встроенным осциллятором или без него;
  • сопло с вольфрамовым электродом от TIG-сварочника;
  • аргоновый баллон с редуктором;
  • небольшой кусочек прутка из тантала или молибдена диаметром и длиной до 20 мм;
  • фторопластовая трубка;
  • медные трубки;
  • небольшие кусочки листовой меди толщиной 1-2 мм;
  • электронный балласт;
  • резиновые шланги;
  • гермоввод;
  • хомуты;
  • проводка;
  • клеммы;
  • автомобильный бачок стеклоочистителя с электронасосом;
  • выпрямительный блок питания электронасоса стеклоочистителя.

Работы по доводке и изготовлению новых деталей и узлов потребуют использования следующего оборудования:

  • токарный станок;
  • электропаяльник;
  • горелка для пайки с баллоном;
  • отвертки;
  • пассатижи;
  • амперметр;
  • вольтметр.

Вернуться к оглавлению

Теоретические основы

Сварочный аппарат для плазменной сварки может быть одного из 2-х основных типов: открытого и закрытого. Основная дуга сварочного аппарата открытого типа горит между центральным катодом горелки и изделием. Между соплом, которое служит анодом, и центральным катодом горит только дежурная дуга для возбуждения основной в любой момент времени. Сварочный аппарат закрытого типа имеет только дугу между центральным электродом и соплом.

Сделать долговечный по 2-му принципу довольно трудно. При прохождении основного сварочного тока через сопло-анод этот элемент испытывает колоссальные тепловые нагрузки и требует очень качественного охлаждения и использования соответствующих материалов. Обеспечить термостойкость конструкции, когда делается такой аппарат своими руками, очень трудно. Когда делается плазменный аппарат своими руками, для долговечности лучше выбирать открытую схему.

Вернуться к оглавлению

Практическая реализация

Часто при кустарном изготовлении плазменного сварочного аппарата сопло вытачивают из меди. При отсутствии альтернативы такой вариант возможен, но сопло становится расходным материалом даже при прохождении через него только дежурного тока. Его придется часто менять. Если удастся достать небольшой кусочек кругляка из молибдена или тантала, лучше сопло изготовить из них. Тогда можно будет ограничиваться периодической чисткой.

Размер центрального отверстия в сопле подбирают опытным путем. Начинать нужно с диаметра 0,5 мм и постепенно растачивать его до 2 мм, пока поток плазмы не станет удовлетворительным.

Конусный зазор между центральным вольфрамовым катодом и соплом-анодом должен составлять 2,5-3 мм.

Сопло вкручивается в полую рубашку охлаждения, которая через фторопластовый изолятор соединяется с держателем центрального электрода. В рубашке охлаждения циркулирует охлаждающая жидкость. В качестве таковой в теплое время года можно использовать дистиллированную воду, зимой лучше антифриз.

Рубашка охлаждения представляет собой 2 полые медные трубки. Внутренняя диаметром и длиной около 20 мм располагается на переднем конце внешней трубки с диаметром около 50 мм и длиной порядка 80 мм. Пространство между торцами внутренней трубки и стенками наружной запаивают тонкой листовой медью. В рубашку с помощью газовой горелки впаивают медные трубки диаметром 8 мм. По ним поступает и отводится охлаждающая жидкость. Кроме того, к рубашке охлаждения нужно припаять клемму для подачи положительного заряда.

Во внутренней трубке делают резьбу, в которую вкручивают съемное сопло из термостойких материалов. На выдвинутом конце наружной трубки также нарезают внутреннюю резьбу. В нее вкручивается изолирующее кольцо из фторопласта. В кольцо вкручивается держатель центрального электрода.

Через стенку наружной трубки в пространство между рубашкой охлаждения и фторопластовым изолятором впаивается трубка подачи аргона такого же диаметра, как для охлаждения.

По рубашке охлаждения циркулирует жидкость из бачка стеклоочистителя. Питание на насос его электродвигателя подается через отдельный выпрямитель на 12 В. Выход для подачи на бачке уже есть, возврат жидкости можно врезать через стенку или крышку бачка. Для этого в крышке сверлится отверстие и вставляется отрезок трубки через гермоввод. Резиновые шланги циркуляции жидкости и подачи аргона соединяются со своими трубками хомутами.

Положительный заряд берется от основного источника питания. Для ограничения тока через поверхность сопла подбирается подходящий электронный балласт. Подаваемый электрический ток должен иметь постоянное значение в районе 5-7 А. Оптимальная величина тока подбирается экспериментально. Это должен быть минимальный ток, который обеспечивает устойчивое горение дежурной дуги.

Возбуждение дежурной дуги между соплом и вольфрамовым катодом может осуществляться одним из двух способов. Встроенным в сварочный аппарат осциллятором или при его отсутствии контактным способом. Второй вариант требует усложнения конструкции плазменной горелки. Держатель центрального электрода при контактном возбуждении делают подпружиненным относительно сопла.

При нажатии на резиновую кнопку штока, соединенного с держателем электрода, острый конец центрального вольфрамового катода контактирует с конусной поверхностью штока. При коротком замыкании в точке контакта резко повышается температура, что позволяет возбудить дугу при отведении пружиной катода от анода. Контакт должен быть очень кратковременным, иначе поверхность сопла пригорит.

Возбуждение тока высокочастотным осциллятором предпочтительнее для долговечности конструкции. Но его приобретение или даже изготовление делает для плазменной сварки нерентабельным.

При работе положительный вывод сварочного аппарата соединяется с деталью без балласта. Когда сопло оказывается на расстоянии несколько миллиметров от заготовки, электрический ток переключается с сопла на деталь. Его значение вырастает до выставленного на сварочном аппарате, а образование из аргона плазмы интенсифицируется. Регулируя подачу аргона и сварочный ток, можно добиться необходимой интенсивности течения плазмы из сопла.

С каждым годом темпы развития промышленности увеличиваются. Это приводит к внедрению новых технологии и способов изготовления тех или иных изделий. При этом нововведения должны быть не только эффективнее морально устаревших методов, но и не уступать по экономической целесообразности и безопасности работы. Давайте поговорим о том, что такое сварка плазменная. Появилась она относительно недавно, но уже очень активно применяется во многих

О плазменной сварке

Такой метод соединения используется для металлических труб, нержавейки и некоторых других материалов. Суть метода заключается в локальном плавлении при направлении плазменного потока на нужный участок. Плазма же представляет собой ионизированный поток газа, который содержит множество заряженных частиц, активно проводящих электрический ток. При нагреве происходит ионизация газа, что достигается при использовании высокоскоростной дуги, выходящей непосредственно из плазмотрона. Естественно, что с повышением температуры газа увеличивается степень ионизации. Температурная амлитуда дуги - не менее 5 и не выше 30 тысяч градусов по Цельсию. Конечно, сегодня сварка плазменная используется повсеместно, но оборудование, в частности плазмотрон, очень дорогостоящее. Таким способом можно соединять детали без разделки кромок, что очень удобно.

Принцип работы

Сварка плазменная возможна только в том случае, если из обычной дуги удастся получить плазменную. Достигается это обычно сжатием и с помощью системы принудительной подачи специального газа в дугу. В качестве плазмообразующего газа используется аргон с небольшим количеством гелия или же водорода. Крайне важно создать защитную оболочку вокруг электрода, для этих целей лучше всего подходит все тот же аргон. Кстати, электроды выполняются из вольфрама, активированного торием или иттрием. Стоит отметить, что стенки плазмотрона сильно нагреваются из-за высокого давления, поэтому их требуется постоянно охлаждать. Из всего вышесказанного можно сделать вывод, что сварка плазменная примечательна высокой температурой в сочетании с небольшим диаметром дуги. Последний параметр позволяет увеличить давление на металл в несколько раз. Кроме того, процесс поддерживается при небольшом токе в 0,2-3,0 Ампер.

Плазменная сварка своими руками

В первое время такой не использовался среди домашних умельцев, так как требовал высокой квалификации. Сегодня ситуация не изменилась кардинально. Тем не менее есть , которые подходят для использования в бытовых условиях. Технология в этом случае достаточно простая. Вам понадобится обзавестись специальным электродами и присадочной проволокой.

Перед началом работ электрод затачивается до получения конусообразной формы с углом не более 30 градусов. Крайне важно правильно установить электрод. Главное - следить за совпадением оси электрода с осью газообразующих насадок. Сварочный стык обрабатывается точно так же, как и при аргоновой сварке. Кромки зачищаются и обезжириваются, только после этого можно приступать к выполнению работ. Кстати, обратите внимание на отсутствие зазоров более 1,5 мм. Участки прихватки нужно дополнительно зачистить и следить за тем, чтобы прихваточные точки и сварочный шов были аналогичными по качеству.

Продолжаем выполнение работ

Плазменная сварка своими руками выполняется при величина которого не должна выходить из рекомендуемого диапазона. Кроме того, за 5-20 секунд до начала сварки подается защитный газ, который отключается примерно через 10-15 секунд после обрыва дуги. Во время работы плазмотрон должен находиться на расстоянии не более 1 см от изделия, а дугу желательно не обрывать до окончания шва. При сварке нельзя допускать перегрева металла. По достижении критической отметки сварка плазменная приостанавливается. Металл охлаждается сжатым воздухом, и только после этого работы возобновляются. Обратите внимание на то, что горелка должна перемещаться плавно и равномерно, как на автоматическом устройстве. В этом случае вы можете рассчитывать на действительно качественный и надежный шов.

Плазменная сварка «Горыныч»: цена и особенности

Многофункциональный сварочный аппарат «Горыныч» является одним из самых известных среди отечественных аппаратов. Можно говорить о том, что это действительно качественное изделие, благодаря которому можно самостоятельно осуществлять сварочные работы. Стоит отметить, что модельный ряд «Горынычей» отличается по мощности. Есть модели на 8, 10 и 12 Ампер. Первый вариант отлично подойдет для бытовых нужд, средний имеет отличное соотношение цена/производительность, а наиболее мощный «Горыныч» используется только профессионалами. Так, модель на 8 Ампер обойдется в 29 тысяч, на 10 А - в 30 тысяч, а на 12 А - в 33 000 рублей. В принципе, плазменная сварка «Горыныч», цена которой ниже, чем у зарубежных аналогов, очень популярна на территории России, Украины, Беларуси и др. государств.

Плазменный сварочный аппарат

Если раньше найти подходящую модель было весьма сложно, то сегодня с этим проблем не возникает. Как правило, аппарат плазменной сварки можно найти в любом специализированном магазине. Вы будете приятно удивлены большим выбором предлагаемых агрегатов. Но все они намного дороже электросварки и инверторов. Плазменный аппарат на фоне остальных вариантов смотрится очень выгодно. Во-первых, скорость выполняемых работ в разы выше, а во-вторых, практически не остается никаких отходов. Для работы плазмосваркой необходимы электричество и сжатый воздух, а при наличии специального компрессора - только подключение к сети. Периодической замене подлежит сопло горелки и электрод. Кроме того, плазматрон должен регулярно заправляться. Для этого применяют специальные баллоны. Интересно, что и сварка считаются самыми безопасными. Тем не менее работы желательно проводить на открытом воздухе или в хорошо вентилируемом помещении.

О сварке на среднем токе

Мы уже немного знаем о том, что такое плазменная сварка. Цена на оборудование, как вы видите, зависит от его мощности. Но стоит обратить внимание на то, что есть несколько видов сварки. Один из них - работа на среднем токе (50-150 Ампер). Такую сварку можно сравнивать с аргоновой, но она считается несколько эффективней, так как мощность дуги выше, а площадь нагрева ограничена. Такой вариант, по сравнению с традиционной дугой, позволяет увеличить глубину проплавки обрабатываемого металла и улучшить передачу теплоты вглубь слоев. В принципе, это обусловлено не только энергетической характеристикой, но и высоким давлением на сварочные ванны. Сварка на среднем токе выполняется с помощью присадочной проволоки. На сегодняшний день это очень востребованное и эффективное решение. Если вы собираетесь работать в домашних условиях, вам подойдет такого рода плазменная сварка. Цена на оборудование отличаться не будет, так как там предусмотрена возможность регулировки.

Сварка на большом токе

В этом случае работы протекают под током свыше 150 Ампер. Это необходимо для получения большего воздействия на металл. По сути, сварка при 150 А аналогична сварке при такой же температуре неплавящимся электродом. Отличительная особенность такого решения заключается в том, что во время выполнения работ образуется сквозное отверстие в ванной, что гарантирует полное проплавление обрабатываемой поверхности. Но тут крайне важно соблюдать технологию, так как при небрежном отношении можно с легкостью получить прожоги. Кроме того, должны соблюдаться и другие важные параметры: охлаждение плазмотрона и условия его хранения, периодическая замена сопла горелки, дозаправка и многое другое. В принципе, инструкцию пишут не просто так, и предъявляемые требования необходимо соблюдать. Обычно аппарат плазменной сварки и резки, работающий на большом токе, необходим для соединения легированных и низкоуглеродистых сталей, меди, титана и др. материалов.

Сборка плазмореза своими руками из инвертора является относительно несложным делом.

Плазморез можно использовать не только для резки различных деталей, но и для сварки.

Прежде чем собирать самодельный плазморез своими руками, следует заранее подготовить некоторые комплектующие, входящие в состав конструкции плазмореза. В конструкцию плазмореза входят следующие элементы:

  • плазменный резак;
  • источник электропитания, в роли которого может использоваться инвертор или трансформатор;
  • компрессорное устройство для подачи потока воздуха и формирования потока плазмы;
  • кабель-шланги для сборки всех компонентов в единый комплекс.

Самодельный плазморез можно использовать для проведения разнообразных технических операций не только на производстве, но и в домашнем хозяйстве.

Дома эти приспособления можно применять для обработки металлических изделий, если требуется проведение тонкой и точной резки.

Промышленность предлагает потребителям устройства, с помощью которых можно проводить сваривание металлов в защитной газовой среде. В качестве защиты при проведении сварки используется инертный газ аргон.

При сборке самодельного устройства следует особое внимание уделить силе тока. Величина этого параметра зависит от используемого источника питания.

Лучше всего применять в качестве источника электротока инвертор. Это устройство обеспечивает стабильное функционирование аппарата плазменной резки. Помимо этого, применение инвертора позволяет обеспечить более экономичное энергопотребление, нежели при использовании в качестве источника питания трансформатора.

Недостатком применения в конструкции плазмореза инверторного источника питания является небольшая толщина заготовок, которые можно обрабатывать при помощи такого устройства.

Преимуществами плазмореза на основе использования инвертора являются относительно небольшая масса устройства и небольшое потребление электрической энергии. Кроме того, КПД устройства, основу которого составляет инверторный источник питания, выше на 10%, чем у устройства с трансформаторным блоком, что оказывает влияние на качество выполнения операций.

При проведении сборки приспособления следует уделить внимание точности и качеству сборки в соответствии соемой, а также объединению элементов в системе.

При сборке приспособления в конструкции нужно использовать сопло достаточной длины, которое не должно быть слишком длинным, иначе его придется часто заменять.

Выбор конструктивных элементов для сборки приспособления

При изготовлении прибора своими руками требуется правильно подобрать соответствующие комплектующие.

Источник электропитания для оборудования. В качестве этого элемента применяется инвертор — это устройство, обеспечивающее подачу напряжения с заранее заданными характеристиками для функционирования оборудования. Помимо инвертора можно применять трансформатор. Если используется в качестве блока питания трансформатор, то при конструировании оборудования нужно учитывать большой вес сварочного трансформатора. Кроме того, следует помнить, что при использовании трансформатора устройство потребляет большое количество электрической энергии.

Для сборки инструмента нужно подготовить плазменный резак, который является основным элементом приспособления, обеспечивающим выполнение рабочих операций. Также потребуется приобрести устройство нагнетания воздушного потока — компрессор и кабель-шланговый пакет.

Использование инверторного источника питания более выгодно, так как это устройство является более экономичным и его стоимость значительно ниже. Приспособление, работа которого основана на использовании инверторного блока питания, проще в использовании. Такое устройство можно применять при проведении работ в домашних условиях и на небольшом производстве. При использовании этого типа блока питания достигается стабильность напряжения, что позволяет осуществлять качественные работы в труднодоступных местах, где использование трансформаторных устройств невозможно.

Плазмотрон — основной элемент резака. Конструкция этого приспособления состоит из сопла, канала подачи воздушного потока, обеспечивающего резку металлических заготовок, электрода и изолятора, играющего одновременно роль охладителя.

Сборка плазменного резака

Для сборки плазмотрона требуется подобрать соответствующий электрод. Чаще всего используются электроды, изготовленные с применением тория, бериллия, циркония или гафния. Такие материалы считаются оптимальными для проведения резки металла воздушно-пламенным потоком. В процессе функционирования установки на поверхности материала электрода образуются тугоплавкие оксиды, которые не позволяют происходить разрушению материала электрода. При выборе типа электрода следует помнить, что некоторые из материалов, используемых для изготовления тела электродов, являются опасными для работника. Так, например, бериллий в составе электрода в процессе работы вызывает образование радиоактивных оксидов, а использование тория вызывает образование токсичных соединений с кислородом. Лучшим материалом является гафний, который абсолютно безопасен для работника, осуществляющего работы.

В процессе сборки следует особое внимание уделить соплу, которое осуществляет формирование струи для резки. От технических характеристик этого элемента зависит качество рабочей струи. Оптимальным является применение приспособления с диаметром 3 см. Длина должна быть достаточной, чтобы рез имел аккуратный и качественный вид. В случае если сопло является слишком длинным, то возможно его быстрое разрушение в процессе работы.

Для осуществления подачи воздушного потока в конструкции плазмореза используется компрессор. Особенностью работы резака является использование в процессе функционирования оборудования газов для защиты и плазмообразования. Работа по осуществлению резки металла совершается при силе тока в 200 А. При работе устройства применяется сжатый воздух, который требуется для охлаждения функционирующего оборудования и формирования плазменной струи. Использование такой конструкции в процессе работы позволяет проводить резание метзаготовок с толщиной металла до 50 мм.

Для соединения всех элементов установки применяется кабель-шланговый пакет. При проведении сборки установки требуется соблюдать определенный порядок работ. Сначала инвертор при помощи кабеля объединяется с электродом для подачи на него напряжения. Посредством шланга осуществляется подача сжатого воздушного потока от компрессорной установки к плазмотрону, где формируется плазменная струя.

Принцип функционирования резака

После того как установка для осуществления резки металла собрана, требуется проверить ее работоспособность. При запуске инвертор подает электроток с высокой частотой на плазмотрон. После подачи напряжения на электрод происходит формирование электродуги, ее температура в момент возникновения варьируется в интервале от 6 до 8 тыс. градусов Цельсия. Формирование дуги происходит между электродом и наконечником сопла. Далее подается поток сжатого воздуха, который при прохождении через электродугу нагревается и увеличивается в объеме в сотню раз, при этом происходит ионизация потока, и он приобретает токопроводные свойства.

При помощи сопла происходит формирование узкого потока плазмы. Скорость истечения плазменного потока равна 2-3 метра в секунду. В момент истечения струи плазмы ее температура значительно возрастает и достигает 25-30 тысяч градусов. На выходе из сопла формируется поток высокотемпературной плазмы, которая применяется для проведения процесса резки. В момент соприкосновения плазменной струи с металлом заготовки происходит гашение первоначальной дуги и зажигание дуги режущей, при помощи которой осуществляется обработка заготовки. Плавление металла происходит локально, в месте воздействия плазменного потока.