Регулирование напряжения в цепях постоянного тока. Электронный регулятор тока для сварочного трансформатора

Качество сварного шва в значительной мере зависит от характеристик электрической дуги. Для каждой толщины металла, в зависимости от его вида требуется определенной силы .

Кроме этого, важна вольтамперная характеристика аппарата для сварки, от этого зависит качество электрической дуги. Для резки металла тоже требуются свои значения электротока. То есть любой сварочный аппарат должен обладать регулятором, управляющим мощностью сварки.

Управлять током можно по-разному. Основные способы регулирования такие:

  • введение резистивной или индуктивной нагрузки во вторичную обмотку сварочного аппарата;
  • изменение количества витков во вторичной обмотке;
  • изменение магнитного потока аппарата для сварки;
  • использование полупроводниковых приборов.

Схематических реализаций этих способов множество. При изготовлении аппарата для сварки своими руками каждый может выбрать себе регулятор по вкусу и возможностям.

Резистор или индуктивность

Регулировка сварочного тока с использованием сопротивления или катушки индуктивности является самой простой и надежной. К последовательно подключают мощный резистор или дроссель. За счет этого меняется активное или индуктивное сопротивление нагрузки, что приводит к падению напряжения и изменению сварочного тока.

Регуляторы в виде резисторов применяют для улучшения вольтамперной характеристики сварочного аппарата. Используется набор мощных проволочных сопротивлений или один резистор, выполненный из толстой нихромовой проволоки в виде спирали.

Для изменения сопротивления специальным зажимом их подключают к определенному витку провода. Резистор выполняется в виде спирали для уменьшения габаритов и удобства использования. Номинал резистора не должен превышать 1 Ом.

Переменный ток в определенные моменты времени имеет нулевые или близкие к нему значения. В это время получается кратковременное гашение дуги. При изменении промежутка между электродом и деталью может произойти прилипание или полное ее гашение.

Для смягчения режима сваривания и соответственно получения качественного шва применяют регулятор в виде дросселя, который включается последовательно с держаком в выходной цепи аппарата.

Дополнительная индуктивность вызывает сдвиг фаз между выходным током и напряжением. При нулевых или близких к нему значениях переменного тока напряжение имеет максимальную амплитуду и наоборот. Это позволяет поддерживать стабильную дугу и обеспечивает надежное ее зажигание.

Дроссель можно изготовить из старого трансформатор. Используется только его магнитопровод, все обмотки удаляются. Вместо них наматывают 25-40 витков толстого медного провода.

Данный регулятор был широко распространен при использовании трансформаторных аппаратов переменного тока благодаря своей простоте и наличию комплектующих. Недостатками дроссельного регулятора сварочного тока являются небольшой диапазон управления.

Изменение количества витков

При этом методе регулировка характеристик дуги осуществляется благодаря изменению коэффициента трансформации. Коэффициент трансформации позволяют изменить дополнительные отводы из вторичной катушки. Переключаясь с одного отвода на другой можно менять напряжение в выходной цепи аппарата, что приводит к изменению мощности дуги.

Регулятор должен выдерживать большой сварочный ток. Недостатком является трудность нахождения коммутатора с такими характеристиками, небольшой диапазон регулировок и дискретность коэффициента трансформации.

Изменение магнитного потока

Данный способ управления используется в трансформаторных аппаратах сварки. Изменяя магнитный поток, меняют коэффициент полезного действия трансформатора, это в свою очередь меняет величину сварочного тока.

Регулятор работает за счет изменения зазора магнитопровода, введения магнитного шунта или подвижности обмоток. Изменяя расстояние между обмотками, меняют магнитный поток, что соответственно сказывается на параметрах электрической дуги.

На старых сварочных аппаратах на крышке находилась рукоятка. При ее вращении вторичная обмотка поднималась или опускалась за счет червячной передачи. Этот способ практически изжил себя, он использовался до распространения полупроводников.

Полупроводниковые приборы

Создание мощных полупроводниковых приборов, способных работать с большими токами и напряжениями, позволило разработать сварочные аппараты нового типа.

Они стали способны менять не только сопротивление вторичной цепи и фазы, но и изменять частоту тока, его форму, что также влияет на . В традиционном трансформаторном сварочном аппарате используется регулятор сварочного тока на базе тиристорной схемы.

Регулировка в инверторах

Сварочные инверторы – это самые современные аппараты для электродуговой сварки. Использование мощных полупроводниковых выпрямителей на входе устройства и последующей трансформации переменного тока в постоянный, а затем в переменный высокой частоты позволил создать устройства компактные и мощные одновременно.

В инверторных аппаратах основным регулятором является изменение частоты задающего генератора. При одном и том же размере трансформатора мощность преобразования напрямую зависит от частоты входного напряжения.

Чем меньше частота, тем меньшая мощность передается на вторичную обмотку. Ручка регулировочного резистора выводится на лицевую панель инвертора. При ее вращении изменяются характеристики задающего генератора, что приводит к изменению режима переключения силовых транзисторов. В итоге получается требуемый сварочный ток.

При использовании инверторных сварочных полуавтоматов настройка происходит так же, как и при использовании ручной сварки.

Кроме внешних регуляторов в блоке управления инвертором предусмотрены еще много различных управляющих элементов и защит, обеспечивающих стабильную дугу и безопасную работу. Для начинающего сварщика лучшим выбором будет инверторный аппарат для сварки .

Применение тиристорной и симисторной схемы

После создания мощных тиристоров и симисторов их стали использовать в регуляторах силы выходного тока в сварочных аппаратах. Они могут устанавливаться в первичной обмотке трансформатора или во вторичной. Суть их работы заключается в следующем.

На управляющий контакт тиристора со схемы регулятора поступает сигнал, открывающий полупроводник. Длительность сигнала может изменяться в больших пределах, от 0 до длительности полупериода тока протекающего через тиристор.

Управляющий сигнал синхронизирован с регулируемым током. Изменение длительности сигнала вызывает обрезание начала каждого полупериода синусоиды сварочного тока. Увеличивается скважность, в результате средний ток уменьшается. Трансформаторы очень чувствительны к такому управлению.

Такой регулятор имеет существенный недостаток. Время нулевых значений увеличивается, что приводит к неравномерности дуги и ее несанкционированному гашению.

Для уменьшения негативного эффекта дополнительно приходится вводить дроссели, которые вызывают фазовый сдвиг между током и напряжением. В современных аппаратах данный метод практически не используются.

Сегодня, как в промышленности, так и в гражданской сфере, есть немало установок, электроприводов, технологий, где для питания требуется не переменное, а постоянное напряжение. К таким установкам относятся различные промышленные станки, строительное оборудование, двигатели электротранспорта (метро, троллейбус, погрузчик, электрокар), и другие установки постоянного тока разного рода.

Напряжение питания для некоторых из этих устройств должно быть изменяемым, чтобы например изменяющийся ток питания электродвигателя приводил бы к соответствующему изменению скорости вращения его ротора.

Один из первых способов регулировки постоянного напряжения — регулирование при помощи реостата. Затем можно вспомнить схему двигатель — генератор — двигатель, где опять же регулированием тока в обмотке возбуждения генератора достигалось изменение рабочих параметров конечного двигателя.

Но эти системы не экономичны, они считаются устаревшими, и гораздо более современными являются схемы регулирования . Тиристорное регулирование более экономично, более гибко, и не приводит к увеличению массо-габаритных параметров установки целиком. Однако, обо всем по порядку.

Реостатное регулирование (регулирование при помощи добавочных резисторов)

Регулирование при помощи цепи последовательно соединенных резисторов позволяет изменять ток и напряжение питания электродвигателя путем ограничения тока в его якорной цепи. Схематически это выглядит как цепочка добавочных резисторов, присоединенных последовательно к обмотке двигателя, и включенных между ней и плюсовой клеммой источника питания.

Часть резисторов может быть по мере надобности шунтирована контакторами, чтобы соответствующим образом изменился ток через обмотку двигателя. Раньше в тяговых электроприводах такой метод регулирования был распространен весьма широко, и за неимением альтернатив приходилось мириться с очень низким КПД в силу значительных тепловых потерь на резисторах. Очевидно, это наименее эффективный метод — лишняя мощность просто рассеивается в виде ненужного тепла.

Здесь напряжение для питания мотора постоянного тока получается на месте, при помощи генератора постоянного тока. Приводной мотор вращает генератор постоянного тока, который и питает в свою очередь мотор исполнительного механизма.

Регулирование рабочих параметров двигателя исполнительного механизма достигается путем изменения тока обмотки возбуждения генератора. Больше ток обмотки возбуждения генератора — большее напряжение подается на конечный двигатель, меньше ток обмотки возбуждения генератора — меньшее напряжение, соответственно, подается на конечный двигатель.

Данная система, на первый взгляд, более эффективна, чем просто рассеивание энергии в виде тепла на резисторах, однако и она отличается своими недостатками. Во-первых, система содержит две дополнительные, довольно габаритные, электрические машины, которые необходимо время от времени обслуживать. Во-вторых, система инерционна — соединенные три машины не в состоянии резко изменить свой ход. В результате снова КПД получается низким. Однако, на протяжении некоторого времени такие системы использовались на заводах в 20 веке.

Метод тиристорного регулирования

С появлением во второй половине 20 века полупроводниковых приборов, появилась возможность создания малогабаритных тиристорных регуляторов для двигателей постоянного тока. Двигатель постоянного тока теперь просто подключался к сети переменного тока через тиристор, и, варьируя фазу открывания тиристора, стало возможным получить плавное регулирование скорости вращения ротора двигателя. Этот метод позволил совершить рывок в подъеме КПД и быстродействия преобразователей для питания моторов постоянного тока.

Метод тиристорного регулирования и сейчас используется, в частности, для управления скоростью вращения барабана в автоматических стиральных машинах, где в качестве привода служит коллекторный высокооборотный мотор. Справедливости ради отметим, что аналогичный метод регулирования работает и в тиристорных диммерах, способных управлять яркостью свечения ламп накаливания.

Постоянный ток при помощи инвертора преобразуется в переменный ток, который затем при помощи трансформатора повышается или понижается, после чего выпрямляется. Выпрямленное напряжение подается на обмотки электродвигателя постоянного тока. Возможно дополнительное , тогда достигаемый эффект на выходе несколько похож на тиристорное регулирование.

Наличие трансформатора и инвертора в принципе приводит к удорожанию системы в целом, однако современная полупроводниковая база позволяет строить конверторы в виде готовых малогабаритных устройств с питанием от сети переменного тока, где трансформатор стоит высокочастотный импульсный, и в итоге габариты получаются небольшими, а КПД уже достигает 90%.

Импульсное управление

Система импульсного управления моторами постоянного тока похожа по своему устройству на импульсный . Этот метод является одним из наиболее современных, и именно его используют сегодня в электрокарах и внедряют в метро. Звено понижающего преобразователя (диод и дроссель) объединено в последовательную цепь с обмоткой мотора, и регулируя ширину подаваемых на звено импульсов, добиваются требуемого среднего тока через обмотку мотора.

Такие импульсные системы управления, по сути — импульсные преобразователи, отличаются более высоким КПД — более 90%, и обладают отличным быстродействием. Здесь открываются широкие возможности для , что весьма актуально для станков с большой инерционностью и для электрокаров.

Андрей Повный

Существуют различные способы регулировки сварочного тока, но, можно сказать, что самое широкое распространение в народе получил очень простой и надежный способ регулировки тока - с помощью включенного на выходе вторичной обмотки балластного сопротивления. Способ не только прост и надежен, но к тому же полезен, так как улучшает внешнюю характеристику трансформатора, увеличивая крутизну ее падения. В некоторых случаях балластные сопротивления применяются сугубо для исправления жесткой характеристики сварочного аппарата.

Величина балластного сопротивления для регулятора сварочного тока составляет порядка сотых-десятых долей Ома и подбирается, как правило, экспериментально. В качестве балластного сопротивления издавна применяются мощные проволочные сопротивления, использовавшиеся в подъемных кранах, троллейбусах, или отрезки спиралей ТЭНов (теплоэлектронагревателей), куски толстой высокоомной проволоки. Несколько уменьшить ток можно даже с помощью растянутой дверной пружины из стали. Балластное сопротивление может включаться либо стационарно.

Либо так, чтобы потом можно было относительно легко регулировать сварочный ток. Один конец такого сопротивления подключается к выходу трансформатора, а конец сварочного провода оборудуется съемным зажимом, который легко перебрасывается по длине спирали сопротивления, выбирая нужный ток.


Нихромовая проволока в качестве балластного сопротивления (диаметром 4 мм и длиной 8 м). Проволока может быть и меньшего диаметра, и при этом будет нужна меньшая длина, но она будет больше нагреваться.

Большинство проволочных резисторов большой мощности изготовлены в виде открытой спирали, установленной на керамический каркас длиной до полуметра, как правило, в спираль смотана и проволока от ТЭНов. Если резистор изготовлен из магнитных сплавов, то в случае его спиральной компоновки, а тем более с какими-либо стальными элементами конструкции внутри спирали, при прохождении больших токов спираль начинает сильно вибрировать. Ведь спираль - это тот же соленоид, а огромные сварочные токи порождают мощные магнитные поля. Уменьшить влияние вибраций можно, растянув спираль и зафиксировав ее на жесткой основе. Кроме спирали, проволоку можно сгибать также змейкой, что тоже уменьшает размеры готового резистора. Сечение токопроводящего материала резистора следует подбирать побольше, потому что при работе он сильно греется. Слишком тонкая проволока или лента будет раскаляться докрасна, хотя даже это, в принципе, не исключает эффективность использования ее в качестве регулятора тока для сварочного аппарата. О реальном значении сопротивления балластных проволочных резисторов судить трудно, так как в нагретом состоянии свойства материалов сильно меняются.

В промышленных сварочных аппаратах способ регулировки тока с помощью включения активных сопротивлений, из-за их громоздкости и нагрева, не получил распространения. Зато очень широко применяется реактивное сопротивление - включение во вторичную цепь дросселя. Дроссели имеют разнообразные конструкции, часто объединенные с магнитопроводом трансформатора в одно целое, но сделаны так, что их индуктивность, а значит, реактивное сопротивление регулируется, в основном, перемещением частей магнитопровода. Заодно дроссель улучшает процесс горения дуги.

Регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. Через регулирующие устройство проходят значительные токи, что приводит к его громоздкости. Другое неудобство - переключение. Для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200А. Другое дело - цепь первичной обмотки, где токи примерно в пять раз меньше, переключатели для которых являются ширпотребом. Последовательно с первичной обмоткой, так же, как и в предыдущем случае, можно включать балластные сопротивления. Только в этом случаи сопротивление резисторов должно быть на порядок большим, чем в цепи вторичной обмотки. Так, батарея из нескольких параллельно соединенных резисторов ПЭВ-50...100 суммарным сопротивлением 6-8 Ом способна понизить выходной ток вдвое, а то и втрое, в зависимости от конструкции трансформатора. Можно собрать несколько батарей и установить переключатель. Если же в распоряжении нет мощного переключателя, то можно обойтись несколькими выключателями. Установив резисторы по схеме изображенной ниже, можно, например, сделать регулятор сварочного тока с комбинацией: 0; 4; 6; 10 Ом.

Правда, при включении балластного сопротивления в первичной цепи, теряется выгода, которую придает сопротивление во вторичной, - улучшение падающей характеристики трансформатора. Но зато и к каким-либо отрицательным последствиям в горении дуги включенные по высокому напряжению резисторы не приводят: если трансформатор хорошо варил без них, то с добавочным сопротивлением в первичной обмотке он варить будет.

В режиме холостого хода трансформатор потребляет небольшой ток, а значит, его обмотка обладает значительным сопротивлением. Поэтому дополнительные несколько Ом практически никак не сказываются на выходном напряжении холостого хода.

Вместо резисторов, которые при работе будут сильно греться, в цепь первичной обмотки можно установить реактивное сопротивление - дроссель.

Эту меру следует рассматривать скорее как выход из положения, если никаких других средств понижения мощности не имеется. Включение реактивного сопротивления в цепь высокого напряжения может сильно понижать выходное напряжение холостого хода трансформатора. Падение выходного напряжения наблюдается у трансформаторов с относительно большим током холостого хода - 2-3А. При незначительном потреблении тока - порядка 0,1А - падение выходного напряжения почти незаметно. Кроме того, включенный в первичной обмотке трансформатора, дроссель может приводить к некоторому ухудшению сварочных характеристик трансформатора, хотя и не настолько, чтобы его нельзя было эксплуатировать. В последнем случае все еще сильно зависит от свойств конкретного трансформатора. Для некоторых сварочных аппаратов, включение дросселя в первичную цепь трансформатора никак не сказывается, по крайней мере согласно субъективным ощущениям, на качестве горения дуги.

В качестве дросселя сварочного аппарата, для регулировки тока, можно использовать готовую вторичную обмотку какого-нибудь трансформатора, рассчитанного да выход около 40В и мощностью 200-300 Вт, тогда ничего переделывать не придется. Хотя все же лучше сделать самодельный дроссель, намотав провод на отдельном каркасе от такого же трансформатора - 200-300 Вт, например от телевизора, сделав отводы через каждые 30-60 витков, подключенные к переключателю.

Самодельный дроссель можно изготовить и на незамкнутом - прямом сердечнике. Это удобно, когда уже есть готовая катушка с несколькими сотнями витков подходящего провода. Тогда внутрь нее надо набить пакет прямых пластин из трансформаторного железа. Необходимое реактивное сопротивление выставляется подбором толщины пакета, ориентируясь по сварочному току трансформатора. Для примера: дроссель, изготовленный из катушки, содержащей предположительно около 400 витков провода диаметром 1,4 мм, был набит пакетом железа с общим сечением 4,5 см 2 , длиной, равной длине катушки, 14 см. Это позволило уменьшить сварочный ток трансформатора 120А примерно в два раза. Дроссель такого типа можно сделать и с регулируемым реактивным сопротивлением. Для этого можно менять глубину ввода стержня сердечника в полость катушки. Катушка без сердечника обладает низким сопротивлением, при полностью введенном стержне ее сопротивление максимально. Дроссель, намотанный подходящим проводом, мало греется, но у него сильно вибрирует сердечник. Это надо учитывать при стяжке и фиксации набора пластин железа.

Для самодельных сварочных аппаратов легче всего, еще при намотке обмоток, сделать их с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно разве что для подстройки тока, нежели для его регулировки в широких пределах. Ведь, чтобы уменьшить ток в 2-3 раза, придется слишком увеличивать количество витков первичной обмотки, что неизбежно приведет к падению напряжения во вторичной цепи. Либо же придется наращивать витки всех катушек, что приведет к чрезмерному расходу провода, увеличению габаритов и массы трансформатора.

Для более тонкой регулировки сварочного тока в меньшую сторону, можно использовать индуктивность сварочного кабеля, укладывая его кольцами. Но не стоит перебарщивать, т.к. кабель будет нагреваться.

В последнее время некоторое распространение получили тиристорные и симисторные схемы регулировки тока сварки. При подаче на управляющий вывод тиристора или симистора напряжения определенной величины регулятор открывается и начинает свободно пропускать через себя ток. В схемах регулирования тока, работающих от переменного напряжения, управляющие импульсы обычно поступают на каждом полупериоде. Регулятор открывается в строго определенные (задаваемые) моменты времени, обрезая таким образом начало каждого полупериода синусоиды тока, что уменьшает суммарную мощность проходящего электрического сигнала.

Естественно, ток и напряжение после этого не имеют синусоидальную форму. Такие схемы позволяют регулировать мощность в широких пределах. Человек, разбирающийся в радиоэлектронике, сможет изготовить подобную схему самостоятельно, хотя, надо сказать, устройства такого рода нельзя признать совершенными. При использовании регуляторов данного типа процесс горения дуги несколько ухудшается. Ведь теперь при уменьшении мощности дуга начинает гореть отдельными, все более кратковременными вспышками. У большинства из схем тиристорных регуляторов шкалы не линейны, а калибровка меняется с изменением напряжения сети, ток через тиристор постепенно увеличивается во время работы из-за нагрева элементов схемы. Кроме того, обычно заметно гасится выходная мощность даже при максимальном положении отпирания регулятора, к чему сварочные трансформаторы очень чувствительны. Такой способ регулировки тока сварки, из-за сложности изготовления и невысокой надежности, не получил большого распространения среди самодельных регуляторов сварочного тока.

Измерение сварочного тока

Для измерения больших токов, в данном случае до 200А, требуются приборы, которые обладают своей спецификой и в быту мало-распространены. Одним из наиболее простых решений будет воспользоваться токоизмерительными клещами.

Специфика измерения этим прибором состоит в том, что для измерения не требуется подключаться в электрическую цепь. Сила тока измеряется на расстоянии от провода без прикосновения к нему. У прибора есть специальный разводящийся контур, отчего и название - "клещи", которым охватывается провод с током. Электромагнитное поле тока протекающего в охваченном проводе наводит ток в замкнутом контуре, который и измеряется. На корпусе "клещей" находится переключатель пределов измерения тока, максимальные значения которого обычно достигают - от 100А до 500А для разных моделей приборов. Токоизмерительными клещами можно оперативно воспользоваться практически в любой ситуации, не оказывая никакого влияния на электрическую цепь. Измерять ими можно лишь переменный ток, который создает переменное электромагнитное поле, для постоянного тока этот инструмент бесполезен. Класс точности в данном случае весьма невысок, поэтому можно судить, скорее, только о приблизительных значениях.

Другой способ измерять ток сварки: вмонтировать в электрическую цепь изготавливаемого сварочного аппарата или дорабатываемого промышленного аппарат амперметр, рассчитанный на большие значения тока, а то и просто включать его на время в разрыв цепи сварочных проводов.

Включение амперметра в сварочную цепь также отмечается некоторой спецификой. Дело в том, что последовательно в цепь включается не сам прибор (стрелочный указатель), а его шунт (резистор), стрелочный же индикатор подключается к шунту параллельно.

Шунт обладает собственным сопротивлением: предположительно сотые доли Ома (так как измерить его обычным омметром не удается). На вид это кусок металла в несколько сантиметров в длину прямоугольного сечения с мощными контактными площадками с обеих сторон. От точности сопротивления шунта зависит и точность показания прибора. Для каждой модели амперметра предусмотрен шунт определенного сопротивления, и они должны продаваться вместе.

И уж чего ни в коем случае не нужно делать, так это пробовать включить стрелочный прибор в цепь вообще без шунта. Если у вас где-то завалялся стрелочный прибор, на шкале которого значатся сотни ампер, то это вовсе не значит, что он сам их измеряет. Проверьте его: и сам по себе прибор окажется всего-то микро- или миллиамперметром. Иногда попадаются стрелочные приборы, у которых шунт вмонтирован внутри корпуса и к нему дополнительно ничего больше подключать не нужно. Как правило, такие отличаются огромными размерами и невысоким классом точности.

Немалое значение имеет способность стрелочного указателя измерительного прибора устанавливаться на текущее значение, преодолевая колебательные переходные процессы при изменении тока, иначе стрелка будет судорожно плясать по шкале уже при незначительных изменениях тока, которые неизбежны при горении сварочной дуги.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Плёнка - самоклейка типа "бамбук". Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

Дополнения от BFG5000

Максимальный ток ограничения можно сделать более 10 А. На кулер - кренка 12 вольт плюс температурный регулятор оборотов - с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ - появляется прирост проходящей мощности.

Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 - поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000 .

Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

Схема простого регулятора

Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.

Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.

Устройства постоянного тока

Схема регулятора характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.

Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

Устройство импульсного регулятора

Чтобы сделать , тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.