Геннадий бадьинсовременные технологии строительства и реконструкции зданий. Способ устройства инъекционной сваи

Возведение зданий на территории города связано с множеством трудностей:

  • стесненные условия строительства,
  • исторические здания в зоне влияния строительства объекта,
  • большое количество коммуникаций под участком застройки,
  • желание заказчика «выжать» максимум арендопригодной площади.

При таких условиях строительство здания открытым способом просто не возможно и одним из наиболее безопасных и эффективных выходов из ситуации является применение технологии Тop-down (Сверху-вниз).

Технология Top-down нашла широкое применение при строительстве объектов в условиях стесненной городской застройки, благодаря щадящему характеру работ. Кроме того ведение работ по этой технологии дает возможность значительно сократить сроки строительства.

Суть метода заключается в одновременном возведении подземной и надземной части здания.

Последовательность ведения работ методом Тop-down:

  1. Устройство конструкции крепления стенок котлована. Наиболее предпочтительным типом ограждающей конструкции является «стена в грунте», благодаря ее способности не пропускать грунтовые воды в котлован.
  2. Устройство свайного основания с уровня земли или из пионерного котлована.Чаще всего применяются сваи-колонны, которые выполняют функцию постоянных опор перекрытий подземной части здания. Также сваи могут использоваться и как временные опоры.
  3. Бетонирование плит перекрытий, которые выполняют роль распорных конструкций. Работы по бетонированию плит ведутся по мере удаления грунта малогабаритной техникой через технологические отверстия выполненного ранее перекрытия. Параллельно можно вести работы в надземной части здания.
  4. Устройство фундаментной плиты и возведение постоянных несущих конструкций снизу-вверх.
  5. Демонтаж временных опорных и распорных конструкций.
  6. В плитах бетонируются технологические отверстия.

Применение технологии Top-down требует от участников строительного процесса строго соблюдения последовательности работ и выполнения норм по охране труда на площадке, так как применяется большое количество сложных инженерных решений.

Похожий метод строительства - semi top-down. Его основное отличие от top-down заключается в том, что большинство земляных работ выполняются открытым способ, при помощи экскаваторов и намного меньший объем работ ведется под защитой перекрытий. Кроме того возведение надземной части производится только после завершения работ в подземной части здания.

Способ возведения свайного фундамента под большие нагрузки

Способ возведения свайного фундамента под большие нагрузки (рис. 3.5) включает:

погружение обсадной металлической трубы, формирование кондуктора путем закрепления системы извлекаемых горизонтальных и вертикальных центрирующих гидродомкратов на обсадной металлической трубе;

формирование скважины под защитой бентонитового раствора с заглублением в слаботрещиноватые известняки, замену загрязненного бентонитового раствора на свежеприготовленный с удалением бурового шлама со дна скважины;

формирование трубно-арматурного каркаса в виде соединения трубной и арматурной частей, установление зонтика-ограничителя уровня заполнения скважины бетонной смесью примерно на границе перехода арматурного каркаса в трубный;

вывешивание трубно-арматурного каркаса над кондуктором арматурной частью вниз, вертикальное центрирование и монтаж трубно-арматурного каркаса в скважине с компенсацией эксцентриситета и фиксацией зазоров от стенок и дна скважины с помощью кондуктора;

установку внутри каркаса бетонолитной трубы и непрерывное бетонирование трубно-арматурного каркаса и ствола скважины снизу вверх под высоким начальным давлением подачи бетонной смеси, с понижением давления при достижении бетонной смесью зонтика-ограничителя;

последующее бетонирование с пониженным давлением подачи бетонной смеси и прекращением подачи бетонной смеси при достижении верхнего уровня трубной части трубно-арматурного каркаса;

извлечение бетонолитной трубы из скважины, засыпку полости между кондуктором и трубной частью каркаса крупным заполнителем, временную выдержку бетонного монолита и демонтаж кондуктора.

Рис. 3.5. Пример выполнения опоры, где указаны скважина 1, трубно-арматурный каркас 2 с арматурной частью 3 и трубной частью 4, ограничитель 5 уровня заполнения скважины бетонной смесью, кондуктор 6, бетонолитная труба 7

Технология подземного строительства top-down (Бельгия)

При строительстве торгового центра «Стокманн» впервые в Петербурге применена передовая технология подземной проходки top-down, суть которой состоит в том, что «стена в грунте» сдерживает давление воды и подземные этажи растут не «снизу вверх» со дна котлована, а наоборот, от уровня поверхности «сверху вниз» на глубину 15 м. Используя бельгийскую современную технологию top-down, петербургские инженеры и строители приобрели неоценимый опыт подземного строительства, который оказался эффективным методом. Мониторинг уровня грунтовых вод при производстве работ показывал, что их уровень не изменялся, и в котловане было сухо. Top-down – это заглубляемое сооружение, жесткая железобетонная по периметру конструкция, позволяющая свести к минимуму осадки грунта, что гарантирует сохранность всех зданий и сооружений, находящихся в непосредственной близости от места ведения работ, а также имеется возможность использования «стены в грунте» в качестве как ограждающей, так и несущей конструкции.

Технология работ следующая. Стены сооружения возводятся в узких и глубоких траншеях, извлеченный грунт замещается бентонитовым раствором. Раствор создает гидростатическое давление на стенки траншеи, удерживает их от обрушений. Затем в вырытую траншею опускается арматурный каркас, который заполняется высокомарочным бетоном или железобетонными элементами, которые вытесняют бентонитовый раствор. Это предохраняет от осадок и деформаций здания, расположенные в непосредственной близости от места строительства.

При применении технологии top-down в тело сваи заводятся прочные стальные сердечники, а шпунт погружается в грунт при помощи мощнейшего импортного вибратора.


Рис. 3.6. Примеры устройства монолитной стены в грунте вблизи существующих зданий


Современные западные геотехнологии ограждения котлованов адаптированы к инженерно-геологическим условиям Санкт-Петербурга. На рис. 3.6 показаны примеры устройства монолитной стены в грунте вблизи существующих зданий. «Стена в грунте» для самого большого подземного сооружения в центральной части Санкт-Петербурга на острове Новая Голландия показана на рис. 3.7.


Рис. 3.7. «Стена в грунте», на острове Новая Голландия


Рис. 3.8. Реконструкция Каменноостровского театра


При реконструкции Каменноостровского театра (рис. 3.8) выполнялись работы по реставрации исторического здания и устройству подземного пространства глубиной 6,5 м. Эта работа уникальна для мировой геотехнической практики (реставрационный вариант технологии top-down, когда вверх идет реставрация, а вниз – подземное строительство).

В Киеве башни «Sky Towers» у Центрального ЗАГСа взметнутся на 47 этажей вверх и уйдут на восемь вниз. Впервые для Киева здание строят сверху вниз – экскаваторы выкапывают нижние этажи под уже построенными!

Фундаменты:

глубина заложения баррет – до 64,5 м;

глубина заложения фундаментной плиты – 28 м;

толщина «стены в грунте» – 1,2 м;

глубина «стены в грунте» – от 50,5 до 53,5 м.

Барреты – глубокие опоры, изготовленные в грунте. Сначала бурят колодец, затем устанавливают арматуру и заливают бетон. Все это производится под давлением, при помощи бурового раствора (часто – бентонита). Применяются при строительстве на слабых грунтах (за счет большой глубины можно добраться до плотных слоев) и плотной застройки (отсутствуют вибрации, как при забивании свай).

«Стена в грунте» строится аналогично барретам – бурение, установка арматуры и бетонирование.

Технология возведения башен:

Сооружается «стена в грунте» по периметру участка строительства.

Заливаются фундаментные буроинъекционные сваи – барреты.

Вырывается котлован до некоторой отметки – например, «-1» этаж. На дне котлована заливается междуэтажное перекрытие, а также перекрытие на уровень выше – они выполняют функцию двухъярусных распорок «стены в грунте». В перекрытиях оставляют технологические проемы.

Экскаваторы выбирают грунт сначала в местах технологических проемов, а затем – под перекрытиями этажа, расположенного выше.

Когда экскаваторы выбрали грунт на весь объем этажа, заливаются следующие перекрытия и процесс повторяется, пока строители не достигнут нижнего уровня по проекту. Когда весь грунт выбран и перекрытия залиты, уже традиционно, снизу вверх, заливаются технологические проемы (лифтовые шахты или пандусы паркинга).

В комплексе с барретами и «стеной в грунте» этот способ позволяет сохранить здания окружающей застройки. Это будет первое в Киеве здание выше 200 м, построенное в сложных геологических условиях, где потребовались глубокие и уникальные фундаменты по технологии top-down.

Погружение шпунтовых свай

При данной технологии используются сварные стальные шпунтовые сваи из элементов полукруглого профиля «сваи F-профиля».

Полукруглый профиль свай – это наиболее экономичная форма шпунтовых свай в сравнении с традиционными корытными и тавровыми сваями. Экономия достигается как за счет сокращения используемого металла, так и за счет уменьшения трудозатрат при монтаже свай.

При этом сваи из элементов полукруглого профиля обладают рядом преимуществ. Они способны выдерживать большие нагрузки, их момент сопротивления – до 12 000 см 3 на погонный метр стенки. Сваи F6012 с моментом сопротивления 6000 см 3 на погонный метр стенки применены при строительстве многофункционального комплекса у Московского вокзала в Санкт-Петербурге, что позволило отказаться от «стены в грунте» и выработки котлована по технологии top-down и вести выемку грунта открытым способом.

Ширина панелей из свай F-профиля может достигать 2 м, что влечет за собой сокращение циклов погружения. Техника не требует модернизации – при вибропогружении применяются обычные штатные зажимы для корытообразного профиля, а при забивке свай ударным методом используют простейшие наголовники.

Благодаря меньшей металлоемкости, сокращению рабочих циклов погружения из-за увеличения ширины профиля, ввиду его высокой оборачиваемости, т. е. возможности повторного использования, экономия может составлять 25–35 % по сравнению с применением обычных шпунтовых свай.

Сварные сваи и панели из элементов полукруглого профиля широко применяются в условиях плотной городской застройки для котлованов глубиной до 10 м без раскрепления и глубиной до 24 м с раскреплением или анкеровкой. Замки шпунтовых свай конструкции ПО «Берегсталь», обладая хорошей грунто– и водонепроницаемостью, обеспечивают надежную гидроизоляцию котлованов при возведении фундаментов.

Инновационные решения для свайного фундаментостроения

При участии Российской инженерной академии разработан комплекс оборудования для свайного фундаментостроения, обеспечивающий полномасштабное техническое оснащение новейших технологий свайного фундаментостроения.

Комплекс включает в себя комплект модельного ряда безударно погружаемых инъекционных устройств для изготовления железобетонных набивных свай всех типоразмеров без выемки земли, а также комплект модельного ряда универсальных вдавливающих устройств для безударного и бесшумного погружения забивных свай (всех типоразмеров) и свайных элементов. Данный комплекс уже применялся на ответственных социальных объектах (рис. 3.9).

Цель разработки комплекса – техническое обеспечение новейших быстрых технологий изготовления фундаментов из безударно-вдавливаемых железобетонных и виброинъекционных набивных свай. Техническое обеспечение должно быть направлено на повышение надежности и несущей способности применяемых ныне забивных и набивных свай, сокращение объемов земляных работ при одновременном уплотнении грунта (за счет устройства фундаментных колодцев без выемки земли), сокращение сроков и снижение стоимости изготовления фундаментов.


Рис. 3.9. Реконструкция 2-й сцены Мариинского театра СПб


Общие характеристики комплекса:

вдавливающие устройства оснащены новыми зубчатыми инерционными полигармоническими самобалансными вибраторами, способными в широком диапазоне амплитуд и ускорений безударно и бесшумно (т. е. без динамических воздействий на окружающую среду) создавать вдавливающие усилия от десятков до сотен и даже тысяч тонн;

конструкции универсальных погружающих устройств позволяют им быть как свободно подвесными на крюковых обоймах кранов, так и навесными – на широко распространенных копровых установках грузоподъемностью 3, 5, 10, 16 и 25 тс.

Первому направлению соответствует комплект модельного ряда высокопроизводительного унифицированного вибропробивного инъекционного устройства для изготовления железобетонных набивных свай без выемки земли.

Предлагаемые высокоамплитудные поличастотные погружающие устройства, оснащенные приводными вращающими механизмами, защищенными от внешних воздействий со стороны уплотняемого грунта, выгодно отличаются от существующих устройств тем, что способны обеспечить изготовление фундаментных колодцев в широком диапазоне диаметров и глубин, а также в несущих грунтах (без выемки самого грунта) при существенно большей производительности и меньших энергозатратах.

Отсутствие колебательных движений формообразующего корпуса при вдавливании его в грунт исключает утрамбовку грунта, что резко снижает лобовое сопротивление грунта и практически исключает передачу динамических нагрузок на близстоящие сооружения.

Был создан унифицированный ряд высокопроизводительных вибровдавливающих инъекционных устройств для изготовления колодцев (без выемки земли) и железобетонных набивных свай, например, – высокопроизводительное малоэнергоемкое навесное устройство, которое способно (без выемки земли) обеспечить: глубину колодцев (и сваи) – до 20 м; диаметры колодцев – 400, 530, 630, 820, 1020 и 1200 мм; время изготовления колодца и сваи – не более 15 мин; диапазон устанавливаемых мощностей – от 30 до 120 кВт; рабочий диапазон температур окружающей среды – от -25 °С до +40 °С. Источник энергии – сеть переменного тока напряжением 380/220 В, 50 Гц. Физический срок службы – не менее 10 лет. Расходы на материалы при эксплуатации – в среднем не более 10 000 руб. в год. Вибрационный и шумовой фон не превышает экологических норм.

Для погружения свайных элементов ныне известно значимое и широко применяемое до настоящего времени многообразие устройств (с использованием в качестве исполнительных зубчатых инерционных самобалансных вибраторов) ударного (вибромолоты), погружающего (вибропогружатели) и вдавливающего (комбинированные устройства) действия. Вибропогружающие устройства являются проверенным и отлично зарекомендовавшим себя оборудованием.

В Санкт-Петербурге применяют три типа свай в зависимости от инженерно-геологических условий площадки строительства (напластование, вид и характеристики грунтов):

сваи, изготавливаемые с выемкой грунта;

сваи, изготавливаемые с частичной выемкой грунта;

сваи уплотнения, изготавливаемые без выемки грунта в результате его принудительного сжатия или вытеснения.

Способ устройства буроинъекционных свай по технологии Гидроспецстроя (микросваи)

Объем применения буроинъекционных свай (микросвай) за прошедшие годы вырос в десятки раз. Существенно обогатился опыт решения с их помощью сложных задач фундаментостроения. Разработаны новые технологические схемы устройства свай, создано новое отечественное и зарубежное оборудование, позволившее кардинально изменить ряд технологических операций и на этой базе повысить несущую способность свай и резко снизить трудоемкость изготовления.

В качестве Стандарта организации ЗАО «ПСУ Гидроспецстрой» приняты «Рекомендации по применению микросвай» или Стандарт организации СТО.

Рекомендации содержат классификацию свай в зависимости от их конструкции и технологии изготовления, указания по области применения, перечень технологического оборудования и материалов для изготовления свай, а также требования к расчету и проектированию фундаментов из микросвай (буроинъекционных свай).

Разнообразие конструкций и технологий устройства буровых свай диаметром до 35 см позволило выделить их в отдельный класс, названный в Рекомендациях «микросваями» по аналогии с американскими и европейскими нормами.

Микросваи (micropile по классификации Eurocode-7 и FHWA-SA -97-070 US) являются разновидностью буровых и набивных свай (по классификации СНиП 2.02.03–85). Они отличаются от традиционных буровых свай следующим:

малым диаметром (d = 150–350 мм);

большой гибкостью (L/d = 60-120);

материалом ствола (мелкозернистый бетон);

способом изготовления (инъекция бетонной смеси в скважину).

Микросваи, в зависимости от технологии их изготовления применяемой организации ЗАО «ПСУ Гидроспецстрой», подразделяются на следующие основные виды:

сваи БИС (буроинъекционные сваи) – устраиваемые путем инъекции бетонной смеси в скважину без последующей опрессовки;

сваи ГСС (Гидроспецстрой) – устраиваемые с опрессовкой свежеуложенной бетонной смеси дополнительной порцией бетонной смеси через устьевой тампон;

сваи ПСШ – устраиваемые путем инъекции бетонной смеси в скважину через колонну «проходных секционных шнеков»;

сваи micro CFA (Continues Flight Auger) – устраиваемые путем инъекции бетонной смеси в скважину через цельную колонну НПШ (непрерывно перемещаемых шнеков);

сваи Геосмол (российский аналог свай Titan) – с буровой штангой, усиленной проволочной набивкой.

Технологические схемы устройства свай приведены на рис. 3.10-3.12.


Рис. 3.10. Буроинъекционные сваи, технологическая схема устройства ГСС:

I – бурение скважины шарошечным долотом с промывкой бентонитовым раствором;

II – извлечение буровой колонны;

III – замещение бурового раствора бетонной смесью;

IV – погружение армокаркаса и опрессовка сваи с устья.

1 – буровая колонна с шарошечным долотом;

2 – бентонитовый раствор;

3 – инъекционная труба;

4 – армокаркас


Рис. 3.11. Технологическая схема устройства свай ПСШ:

I – бурение скважины с применением проходных секционных шнеков;

II – извлечение буровой колонны с одновременной опрессовкой скважины через клапан шнека;

III – погружение арматурного каркаса в бетонную смесь.

1 – проходной шнек;

2 – клапан шнека;

3 – армокаркас


Рис. 3.12. Технологическая схема устройства свай micro CFA:

I – бурение скважины ввинчиванием буровой колонны НПШ (непрерывно перемещаемых шнеков);

II – извлечение без вращения буровой колонны с одновременным заполнением скважины через клапан шнека;

III, IV – погружение арматурного каркаса в бетонную смесь.

1 – буровая колонна НПШ;

2 – бетонная смесь;

3 – армокаркас

Стальные трубчатые сваи, открытые снизу

Применение открытых снизу стальных трубчатых свай способствует сокращению объемов и сроков производства строительных мероприятий, затрат рабочей силы и материала свай за счет более рационального функционирования поперечного сечения ствола под расчетной нагрузкой.


Рис. 3.13 . Использование наконечников


Использование наконечников (рис. 3.13) позволяет расширить область применения трубосвай на большие их диаметры, на повышенные глубины погружения, труднопроходимые грунты и более полно использовать резервы трубосвай в части их несущей способности.

Способ сооружения пакета буронабивных свай

Под пакетом буронабивных свай понимается расположенная в заданном проектом геометрическом очертании последовательность устройства свай, например линейная, прямолинейная, криволинейная, замкнутого или разомкнутого очертания. Поставленная задача достигается тем, что в способе сооружения пакета буронабивных свай путем последовательного бурения ряда нечетных и ряда четных секущихся скважин для буронабивных свай на расстоянии, меньшем диаметра сваи, с последующим армированием буронабивных нечетных скважин каркасами из арматуры диаметром, на 10 · 15 % меньшим диаметра четного столба, и бетонированием. Первоначально бурят ряд скважин, армируют их каркасами, причем на двух диаметрально противоположных сторонах каждого каркаса для нечетных скважин со стороны, обращенной к месту размещения смежной четной скважины, по всей длине каркаса прикрепляют временными креплениями гибкие армированные рукава из воздухонепроницаемого материала, заглушенные снизу и имеющие снаружи антиадгезионное покрытие. Данное покрытие при бетонировании сваи заполняют газом или смесью газов до давления, не менее давления гидростатического столба бетонной смеси у основания сваи, и выдерживают их под давлением до отвердевания бетона с образованием в нем пазов с длиной дуги в поперечном сечении не более половины периметра армированного рукава, образующей по длине сваи участок эллиптической или круговой цилиндрической поверхности. После чего из рукавов стравливают газ и их извлекают из нечетных скважин, далее производят бурение четных скважин с использованием образованных в нечетных сваях пазов в качестве направляющих, их армирование и бетонирование в них четных свай (рис. 3.14). При этом в армированные рукава можно подавать газ или смесь газов, нагретых до температуры, превышающей температуру окружающей среды. Армированные рукава одного арматурного каркаса могут заполнять одновременно, предпочтительно, объединив их тройником с источником газа.


Рис. 3.14. Бурение четных скважин с использованием образованных в нечетных сваях пазов в качестве направляющих, их армирование и бетонирование в них четных свай. Форшахта 1 с направляющими отверстиями для нечетных 2 и четных 3 скважин, каркасы арматуры 4, гибкие армированные рукава 5

Способ устройства инъекционной сваи

Способ устройства инъекционной сваи (рис. 3.15) включает устройство скважины без извлечения грунта путем вдавливания наконечника и инъектирование твердеющего закрепляющего раствора через инъекторную трубу. Новым является то, что используют перфорированную по всей длине инъекторную трубу, на конце которой закреплен конусный наконечник, состоящий из диска и режущих пластин, края которых выступают за основание диска, диаметр которого больше диаметра инъекторной трубы, и в грунт вдавливают инъекторную трубу с наконечником с одновременным нарезанием на стенках скважины продольных пазов и образованием зазора между стенками образуемой скважины и инъекторной трубой, а по окончании процесса инъектирования инъекторную трубу с наконечником оставляют в скважине. Таким образом повышается технологичность, несущая способность сваи при снижении сроков ее возведения.


Рис. 3.15. Способ устройства инъекционной сваи:

1 – инъекторная труба;

2 – конусный наконечник;

3 – режущие пластины;

4 – сквозные фланцы;

5 – отверстия;

8 – уплотненная зона

В условиях плотной городской застройки и дефицита свободных участков подземное строительство приобретает особую актуальность. Не только в столице, но и в других крупных городах - Санкт-Петербурге, Екатеринбурге, Новосибирске, - под землей наблюдается настоящий «строительный бум».

Однако местная специфика и гидрогеологические условия зачастую делают задачу возведения подземных объектов очень непростой. Это стимулирует застройщиков использовать сложные технологии разработки грунта. Давайте разберемся, от чего зависит выбор оптимального решения.

Современные строительные технологии позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях.

Выбор способа строительства зависит от экономической целесообразности , конструктивных особенностей и назначения строящегося объекта. Как правило, большинство подземных сооружений городской инфраструктуры строится открытым или полузакрытым способом, на глубинах не более 30 м. Оба метода подразумевают устройство котлована с применением различных технологий и специального оборудования.

И просто, и дешево

Наиболее экономичным является способ, при котором открытая разработка котлована производится без специального укрепления его откосов. Борта такой выемки имеют уклон в 30°, благодаря чему грунт не осыпается вниз. «Этот способ - самый дешевый и надежный, сэкономить тут уже почти не на чем, - замечает Михаил Коваленко, начальник участка компании «Строительный Альянс», - но следует понимать, что использовать его, например, в центре города, просто невозможно.

Другое дело, если строительство производится где-то на окраине населенного пункта».
Чаще всего данный способ разработки котлована используется при строительстве на открытом пространстве, в пригородах, в сельской местности. Например, таким способом иногда строят подземные парковки неглубокого залегания.

Впрочем, несмотря на легкость применения этого метода, он имеет ряд ограничений. Во-первых, при увеличении глубины заложения откосы придется делать более пологими - уклона в 30° будет недостаточно. Это не всегда возможно: например, если территория, выделенная под стройку, небольшая.

Во-вторых, при наличии подземных вод необходимо использовать специальную технику для водопонижения, что также может существенно усложнить строительные работы и повысить их стоимость. Тем не менее, устройство котлована без применения ограждающих конструкций осуществляется не так уж и редко.

Экономично, но ненадежно

Распространенным решением при открытой разработке котлована является его шпунтовое ограждение (укрепление откосов шпунтовыми сваями). Этот метод часто можно наблюдать, например, при открытом способе строительства тоннелей метрополитена, устройстве подземных переходов, возведении оснований для мостов и автомобильных развязок.

В отечественной практике часто используются более экономичные способы, например, с использованием старых труб, которые устанавливают в заранее пробуренные скважины. В этом случае для предотвращения осыпания грунта между сваями крепятся деревянные доски или стальные листы: по мере углубления котлована они размещаются все ниже.

Для усиления ограждения устанавливаются распорки, в качестве которых обычно применяются бывшие в употреблении трубы относительно небольшого диаметра. При достижении необходимой глубины заливается фундамент, делается гидроизоляция и т.д.

Этот метод является традиционным для отечественного строительства и широко используется в городских условиях при сооружении подземных объектов любого назначения — парковок, подземной части зданий, различных инфраструктурных объектов.

Следует отметить, что, в отличие от классического шпунтового, ограждение, образованное стальными трубами, не является водонепроницаемым, поэтому при наличии грунтовых вод без насосного оборудования не обойтись. Еще один минус - большая вероятность деформации ограждающей конструкции, которая не обладает достаточным запасом прочности.

В связи с этим данную технологию проблематично применять в неустойчивых грунтах и на глубине более 10 м.

Дорого, но эффективно

Постепенно набирает популярность в подземном строительстве полузакрытый метод под названием «top-down» , подразумевающий поярусную разработку грунта. Суть метода заключается в том, что объект возводится сверху вниз, а грунт вынимается из-под заливаемых перекрытий. Это позволяет экономить место и строить буквально «на пятачке», но требует максимально строгого соблюдения технологических норм и особого внимания к используемым материалам и конструкциям, в частности, из-за возможного контакта с грунтовыми водами.

Например, к опалубочной фанере , применяемой для заливки ограждений и перекрытий, предъявляются повышенные требования к прочности, а также влагостойкости, которая особенно важна в сложных гидрогеологических условиях.

Здесь лучшим выбором является ламинированная березовая фанера, у которой эти показатели очень высоки.

« - материал уникальный, у этого материала соотношение «вес/прочность» лучше, чем у стали, - говорит Андрей Кобец, менеджер по развитию продукта группы «СВЕЗА», мирового лидера по производству березовой фанеры. - Причем свои свойства она сохраняет в диапазоне температур от -40 до +50 ºС.

Естественно, что в сложных условиях подземного строительства, включая возведение объектов метрополитена, в опалубочных щитах этот материал применяется повсеместно».

«Качественная ламинированная фанера способна успешно работать практически под водой, - добавляет Геннадий Минкин, специалист ГК «ПромСтройКонтракт». - Например, при строительстве Загорской ГАЭС влагостойкая ламинированная фанера СВЕЗА успешно применялась почти при 100%-й влажности».

Рассмотрим основные особенности строительства по технологии «top-down».

По контуру сооружения возводится так называемая «стена в грунте», которая может быть монолитной или сборно-монолитной. Для этой цели обычно используется бетон с высоким уровнем водонепроницаемости, например, В-50 (М-250).

На начальном этапе стена может заливаться в предварительно выкопанной по периметру здания траншее, после чего из периметра выбирается грунт. Возможен и вариант с предварительной выемкой неглубокого (несколько метров) котлована и укреплением его стен шпунтовыми сваями. Также используется укрепление котлована методом секущихся свай.

Затем на глубине 2-3 метров заливается монолитное перекрытие, которое удерживает стены котлована от обрушения и в то же время является нулевой отметкой для верхнего подземного этажа.

После затвердевания бетона начинаются работы по извлечению грунта из-под готового перекрытия. Как правило, этот процесс осуществляется средствами малой механизации, с помощью которых грунт подается к специальному отверстию в монолитной конструкции, а затем - поднимается наверх.

По мере углубления стены котлована вновь укрепляются бетоном, а при достижении отметки следующего этажа снова заливается очередное перекрытие.

Несмотря на то, что за рубежом этот метод применяется весьма широко, для российских строителей он все еще является экзотикой по причине своей дороговизны и необходимости использовать большое количество специальной техники.

В то же время преимущества метода «top-down» неоспоримы: применение перекрытий в качестве распорок помогает избежать обрушения, а размер рабочей площадки минимален.

«Эта технология позволяет вести строительство уникальных современных объектов самым щадящим способом , за счет минимизации деформации ограждающих конструкций, - рассказывает Сергей Сотников, руководитель геотехнического инженерного бюро «ПЕТЕР-ГИБ» (Санкт-Петербург). - Мониторинг состояния окружающей застройки, который ведется не первый год, подтверждает наши расчеты - влияние на соседние дома незначительно.

Кроме того, данный метод обеспечивает возможность вести работы по двум направлениям, возводя подземный и наземный объемы зданий».

Сегодня, благодаря использованию технологии «top-down», стало возможным строительство крупных подземных объектов в историческом центре городов. Примером такого строительства может служить многоярусный торговый комплекс на Манежной площади в Москве, в который можно попасть не только с поверхности, но также из метро и подземных переходов.

Освоение — естественный путь развития современных городов, где плотность застройки не оставляет места для новых зданий и сооружений. Этот же фактор определяет и выбор технологии подземного строительства. Освоение прогрессивных методов позволяет повысить эффективность использования городского пространства, добавляя мегаполису новое измерение.

Развитие гражданского и промышленного строительства в современных условиях плотной городской застройки крупных городов и мегаполисов является актуальным направлением как для Российской Федерации, так и в мировом масштабе.

Решение данной задачи зачастую связано с возведением зданий повышенной этажности с рациональным использованием их подземного пространства.

Необходимость использования подземного пространства городов обусловлена такими факторами, как нехватка свободных территорий в условиях исторически сформировавшейся застройки, так и требования развития городской инфраструктуры. В современном мире подземное пространство городов используется не только для размещения инженерных коммуникаций и объектов транспортного строительства, но также для строительства комплексов общественно-бытового назначения, многоэтажных подземных гаражей и стоянок, предприятий торговли, помещений заглубленных частей жилых и офисных зданий.

Возведение подземных и заглубленных городских объектов гражданского устраивается открытым или полузакрытым способом в котлованах. При этом ежегодный объем таких объектов подземного строительства в России и за рубежом неуклонно растет, возрастает и масштаб реализуемых объектов строительства.

Однако, в настоящее время не прослеживается тенденции в сторону роста габаритов подземных и заглубленных сооружений, хотя технические возможности для роста глубины проектируемых котлованов и увеличения количества подземных этажей существуют. На сложившуюся ситуацию, очевидно, влияют следующие факторы: экономическая целесообразность, комфортность пребывания в подземных помещениях, влияние на окружающую застройку и гидрогеологические условия. В наши дни максимальная глубина котлованов, проектируемых в городских условиях, обычно не превышает 25-30 м, а количество подземных этажей – пяти-шести.

Однако специфика исторической застройки городов индивидуальна, и требует разработки новых конструктивных и технологических решений.

На сегодняшний день применяют следующие технологии освоения подземного пространства:

  1. Строительство в котлованах без крепления под углом естественного откоса грунта;
  2. Строительство способом опускного колодца;
  3. Ограждение котлована из стальных элементов с забиркой;
  4. Шпунтовые ограждения котлована;
  5. Способ «стены в грунте»;
  6. Ограждение котлована из буросекущихся свай;
  7. Буросмесительная технология создания ограждений котлованов;
  8. Крепление откосов буровыми анкерами;
  9. Распорное крепление котлована с помощью ферм;
  10. Устройство котлована по технологии «Top-Down» («сверху-вниз»).

В Европе и Америке технология «Top-Down» нашла широкое применение. Это объясняется тем, что этот способ позволяет практически одновременно вести работы по устройству подземной и наземной частей здания, что соответственно ускоряет сроки окупаемости инвестиций. Также важно отметить, что данный способ позволяет минимизировать деформации ограждающих конструкций и, соответственно, осадки соседних зданий. Достигается это за счет монтажа распорных перекрытий, инвентарных конструкций ферм или иных технических решений, индивидуальных для каждого объекта строительства.

Метод строительства «Top-Down» предполагает устройство с поверхности земли или с промежуточных отметок в котловане временных или постоянных опор внутри контура сооружения, поддерживающих перекрытия подземной части здания, бетонируемых по грунту и воспринимающих действие распора от ограждения котлована. Ведение земляных работ в котловане производится из-под перекрытий через устраиваемые технологические проемы. Бетонирование нижележащих перекрытий ведется последовательно по мере удаления грунта. В случае применения временных опор, поддерживающих перекрытия, они демонтируются после возведения фундаментной плиты и постоянных колонн или несущих стен, бетонируемых снизу-вверх.

При строительстве по технологии «Top-Down» для ограждения котлована в современных условиях зачастую используют «стену в грунте», как наиболее универсальную конструкцию, способную воспринять вертикальные нагрузки от веса подземных перекрытий, а также защиты от подземных вод.

Также при строительстве подземных сооружений по данной технологии необходимо уделить особое внимание устройству опор-колонн буровым способом или способом «стена в грунте», поддерживающих перекрытия в процессе разработки и удаления грунта из котлована. Технология «сверху-вниз» постоянно совершенствуется в направлении сокращения затрат на возведение этих временных конструкций. Ярким примером может служить научная разработка с креплением ограждения котлована, где в верхнем ярусе монтируются инвентарные металлические конструкции ферм. Фермы опираются на «стену в грунте», а бетонируемые поэтапно по мере разработки грунта подземные перекрытия подвешиваются к конструкциям этих ферм. После бетонирования снизу-вверх вертикальных элементов каркаса временные конструкции подвески и ферм демонтируются.

При значительных размерах котлованов в плане используют комбинированный метод разработки грунта, в котором возведение конструкций подземной части по периметру котлована выполняется способом «Top-Down», а в центральной части – по классической схеме снизу-вверх. Крепление ограждения котлована осуществляется за счет пространственной работы периметральных фрагментов дисков подземных перекрытий.

Строительство подземных сооружений в стесненных условиях городской среды сопровождается решением ряда сложнейших геотехнических проблем, в том числе и связанных с вопросами технологии производства строительных работ и обеспечением устойчивости существующей застройки. Однако возможности современных технологий и оборудования предоставляют инженерам и строителям выбор доступных способов устройства подземных и заглубленных сооружений, таким как хорошо зарекомендовавшая себя технология «Top-Down». Применение столь сложной технологии строительства зданий требует принципиально иной технологии проектирования. При этом технология строительства становится первичной и диктует основные решения конструкции, требует учета изменения напряженно-деформированного состояния окружающего грунтового массива и возводимых конструкций на всех основных стадиях производства работ, а также стадии эксплуатации. Правильный и научно обоснованный выбор видов и последовательности выполнения технологических операций, методов устройства ограждения котлована, способов усиления оснований и фундаментов прилегающих зданий, научное сопровождение ведущихся работ позволяют не только снизить до минимума возможность возникновения аварийных ситуаций в процессе строительства и избежать необоснованных дополнительных деформаций зданий и инженерных сооружений, расположенных и зоне влияния строительства, но и снизить стоимость строительно-монтажных работ.

Необходимость возведения зданий в условиях плотной застройки и примыкающих к строительному объекту коммуникаций, стала причиной появления новых технологий. Ещё одним поводом рождения новых технологий стали современные требования к офисным и жилым зданиям. В их проектах предусмотрено наличие подземных парковок, выполненных в нескольких уровнях. В некоторых зданиях их глубина доходит до 36 метров.

Сегодня разработаны строительные технологии, благодаря которым у строителей имеется возможность возведение подземных объектов в сложнейших условиях. Уже построено достаточно большое количество зданий в ограниченном пространстве центральной части городов, подземная часть которых расположена на большой глубине.

Традиционные методы подземного строительства

Если строительство ведётся на открытом пространстве, то особых проблем не возникает. В этом случае, даже при необходимости устройства глубокого котлована, его выполняют открытым способом. При использовании такого способа часто отказываются от укрепления откосов, выполняя их с уклоном около 30°.

Сложности возникают лишь при наличии в районе строительства подземных вод. Тогда приходится использовать специальное оборудование для водопонижения, что увеличивает как время строительства, так и его стоимость. Гораздо чаще при открытом метоле разработки котлованов используют укрепление откосов с помощью шпунтовых свай.

Иногда сваи заменяют старыми трубами, установленными в заранее подготовленные скважины. Для лучшего закрепления грунта между ними монтируют стальные листы или доски. Выполненное ограждение усиливают распорками, изготовленными из труб небольшого диаметра, бывших в употреблении.

После достижения проектной глубины в котловане заливается фундамент, проводятся гидроизоляционные работы. Данный способ давно используется при создании подземных сооружений различных видов, но он не считается особо надёжным. У ограждающей конструкции отсутствует достаточный запас прочности, поэтому при его применении в неустойчивых грунтах возможно возникновение её деформации. Не рекомендуется использование данной технологии и при глубине котлована более 10 метров.

Современная технология подземного строительства «top-down»

Относительно недавно разработанный метод подземного строительства, представленный под названием «top-down», означающим проходку котлована сверху вниз. При использовании данного метода предусмотрена поярусная разработка грунта. Такой способ строительства подземных сооружений позволяет вести работу на ограниченном пространстве, что чрезвычайно важно при «точечной» застройке.

При строительстве подземных сооружений методом «top-down», должны максимально точно соблюдаться технологические нормы. Особое значение уделяется качеству конструкций и материалов, используемых при строительстве, ввиду возможного их контакта с залегающими в месте строительства грунтовыми водами.

Особенности технологии «top-down»

Начинается строительство подземной части сооружения с возведения по его периметру «стены в грунте». Она может быть выполнена в виде монолита, или же быть сборно-монолитной. Конструкция выполняется из бетона, имеющего высокую водонепроницаемость. Начальный этап работы может выполняться двумя способами:

  1. По периметру будущего сооружения выкапывается траншея, в которую заливается бетон. Затем из внутренней части выбирается грунт на глубину до трёх метров.
  2. Предварительно выкапывается котлован, стены которого укрепляются шпунтовыми сваями. По готовности первого этапа строительства выполняется заливка монолитного перекрытия, выполняющего сразу две функции - оно становится нулевой верхнего этажа подземного сооружения, а также поддерживает стены котлована.

В монолите оставляют технологические отверстия, через которые после полного застывания бетона из-под него удаляется грунт. Данный этап работы выполняется механизированным способом. Грунт направляется к технологическому отверстию, а затем эскаватором-грейфером поднимается наверх.

После достижения котлованом необходимой глубины стены вновь укрепляются, и заливается следующее перекрытие. При необходимости цикл работ повторяется. Уникальная технология даёт возможность проводить подземные строительные работы на минимальной рабочей площади, что чрезвычайно важно в современных мегаполисах.

Особым преимуществом технологии «top-down», является возможность одновременно с выполнением подземных работ выполнять возведение основной, наземной части здания. Проведённые исследования зданий, уже построенных данным методом, утверждают, что влияние строительства на постройки, находящиеся рядом, минимальное.

Метод «top-down» является усовершенствованным вариантом технологии «up-down», чаще всего используемой в транспортном строительстве. Эта технология не предусматривает продолжения в виде наземного сооружения. Поэтому её обычно используют при строительстве подземных парковок, возводящихся при сохранении движения автотранспорта.

В ходе проведения строительных работ при устройстве плит перекрытия используются временные опорные конструкции. После возведения проектных стен и колонн и соединения их с перекрытиями, временные конструкции удаляются. Этот этап в технологии «up-down» особенно важен, так как нагрузка от верхних строений без ущерба для их прочности должна быть перенесена с временных на постоянные опорные конструкции.

В современных городах использование новейших технологий производства подземных работ часто является единственным способом возведения новых объектов. Плотность застройки не даёт возможности строительства традиционными способами. Это и является фактором, определяющим выбор прогрессивных методов, использование которых позволяет расширить городское пространство. Территория города используется более эффективно за счёт появления подземных уровней.